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CITAPTER I 

BACKGROUND OF STUDY 

Long be fo re  the appearance of the a i rp l ane ,  engineers  

and mathematicians were concerned with the s t a b i l i t y  of 

dynamic systems i n  order t o  insure  t h e i r  s a t i s f a c t o r y  

operation. '  

governor for t h e  Natt steam engine was an e a r l y  example of  

Routh's (1884) a n a l y s i s  of the f l y - b a l l  

such an a n a l y s i s ,  S tudies  of  var ious dynamic systems were, 

i n  genera l ,  c a r r i e d  on s e p a r a t e l y  i n  the  ind iv idua l  f i e l d s  

of engineering, t h a t  i s ,  mechanical, e l e c t r i c a l ,  hydraul ic  

ae ronau t i ca l ,  e t c .  I n  the  development of the a i r p l a n e ,  f o r  

example, up t o  t h e  advent o f  Wopfd War 11 the dynamic 

systems incorporated t h e r e i n  were f o r  the most p a r t  COM- 

p l e t e l y  sepa ra t e  u n i t s .  ?he c o n t r o l  su r f aces  were d i r e c t l y  

connected t o  t he  p i l o t  with spr ings ,  pu l leys ,  bob weights, 

and e l a s t i c  cab le s ;  e l e c t r i c i t y  was l imi ted  t o  l i g h t s ,  

r a d i o ,  and instruments;  hydraul ics  were incorporated with 

r e t r a c t a b l e  landing gear:  and aerodynamicists were gene ra l ly  

concerned with "s t ick- f  ixed" and n s t i c k - f r e e r t  s t a b i l i t y  of 

the  air f rame.  Each component had very l i t t l e  e f f e c t  on the  

o the r .  The b2g increase  i n  s i z e  and speeds of a i r p l a n e s  

I Nill iam Bol l ag ,  Aerodynamic S t a b i l i t y  and Automatic 
Control .  Jou r ,  Aero. S c i . ,  v o l e  18, no. g P  Sep t ,  1951, 
PP* 569-9617. 
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dur ing  World War I1 toge ther  w i t h  t he  increased r e l i a b i l i t y  

of a u t o p i l o t s  during t h e  l a s t  score  of' years  p r a c t i c a l l y  

e l imina ted  the "slrnplif  isd" a i rp l ane  The s t a b i l i t y  and 

ope ra t ion  of the a i r p l a m  became dependent upon the 

hydraul ic  and e l e c t r i c a l  boost  systerns f o r  t he  c o n t r o l s  

coupled wi th  sensing devices  f o r  a r t i f i c i a l  s t a b i l i t y ,  and 

coupled w i t h  a u t o p i l o t s  s e n s i t i v e  t o  a l a rge  range of 

f requencies  from the low frequency phugoid mode of the  

a i r p l a n e ' s  f l i g h t  path t o  the  very high frequency modes of 

s t r u c t u r a l  v i b r a t i o n s  of f l s x i b l e  wfngs and fuse lages .  The 

coupled systems a r e  c o n t r o l l e d  by the  human p i l o t ,  r ad io  

and r ada r  s i g n a l s ,  ng (gpav i ty )  r e s t r i c t o r s ,  and s t a b i l i z i n g  

a u t o p i l o t s ,  a l l  a c t i n g  a s  8 u n i t  o r  s epa ra t e ly .  The aero- 

dynamicist ,  becoming f a m i l i a r  wi th  servomechanisms, found 

t h a t  s t a b i l i t y  i n  each sepa ra t e  component d id  not  insure  

s t a b i l i t y  of t he  whole working u n i t .  A means of r e l a t i n g  

and adding the  inherent  c h a r a c t e p i s t f c s  of the var ious 

systems was 8 r e a l i a t i c  n e c e a s i t g  i n  order f o r  an a i r c r a f t  

t o  no t  on ly  be a t ab le  but t o  be able  t o  respond accura t e ly  

t o  input  commands, 

A convenfent means of r e l a t i n g  ind iv idua l  l i n e a r  

components, and one g e n e r a l l y  accepted today, i s  the app l i -  

c a t i o n  of  t h e  frequency response and t r a n s f e r  f u n c t i o n  

concept ,  This  concept w i l l  be expanded i n  l a t e r  chap te r s  of  

t h i s  t h e s i s  and it should a u f f i c e  f o r  now t o  say t h a t  the 
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t r a n s f e r  func t ion  i s  8 mathernatfca% expression incorpora t ing  

the inhe ren t  dynamic c h a r a c t e r i s t i c s  of a system, r ega rd le s s  

of its nature  ( e l e c t r i c a l ,  meohanical, e t c  1 and r e l a t i n g  

the output of t h e  sys tem t o  i t s  input;. 'Wi t t en  a s  8 

func t ion  o f  frequency, the t r a n s f e r  func t ion  is p l o t t e d  a s  

a r a t i o  of ou tput  t o  input  amplitude and the phase angle 

between output  and the input a t  each frequency o f  o s c i l -  

l a t i o n ,  T h i s  p l o t  expresses  the  frequency response.  

Furthermore, frequency-response c h a r a c t e r i s t i c s  of any one 

component of a complex system may be obtained by "bench- 

t e s t i n g "  o r  " f l i g h t - t e s t i n g "  techniques and the frequency 

data. from each component combined t o  give t h e  frequency 

response of the coupled u n i t s ,  This  information, i n  tu rn ,  

allows the engineer t o  c a l c u l a t e  the  roesponse and degree o f  

s t a b i l i t y  of the complete u n i t  t o  any a r b i t r a r y  input .  

Due t o  the importance of the information obtained,  a 

g r e a t  d e a l  of work has  recentby gone i n t o  developing methods 

of bench-test ing and f l i g h t - t e s t i n g  the  var ious s y s t e n s  t h a t  

go i n t o  present-day a i r c r a f t ,  Considerable i n t e r e s t  i s  

centered  around reducing the  time and work requi red  f o r  

these t e s t i n g  techniques a s  well  a s  maintaining an acceptable  

l e v e l  of accuracy. A numbes o f  methods f o r  doing t h i s  have 

been suggested and a re'sume' of methods and progress  t o  date 

w i t h  rseference t o  dynamic flight t e s t i n g  1s presented 
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by PAilliken.2 

advantages and l i m i t a t i o n s ,  some methods have gained 

popu la r i ty  with various groups whereas o the r  methods remain 

comparatively umtsede A number of' methods have been 

examined and used by the  author under the auspice of the 

Langley Laboratory of the National Advisorg'Cormnittee f o r  

Aeronautics i n  an effort t o  determine which methods t o  adopt 

i n  e s t a b l i s h i n g  the t r a n s f e r  functions o f  the var lous  a%.??- 

c r a f t  undergoing dynamic f l i g h t  tests. This  program has  

o f f e r e d  a c e r t a f n  amount of  p r a c t i c a l  experience i n  the use  

and l i m i t a t i o n s  of  the methods, and i t  is bel ieved  t h a t  t h i s  

experience may be of value to others engaged fn ob ta in ing  

the frequency responses of  a i r c r a f t ,  No attempt has  been 

rnads t o  examine a l l  the  known methods of analyzing dynamic 

responses  and omission o f  any method is not intended t o  

imply lack of mer i t*  

Although a l l  t h e s e  methods appear t o  have 

A b r i e f  review of the  methods examined is of fe red  i n  

t h i a  paper,  together  with Peferences t o  t h e f r  d e r i v a t i o n s  

and examples o f  thefar a p p l i c a t i o n ,  Three types  of a i r c r a f t ,  

a f i g h t e r ,  a t ranspopt ,  and a f r e e - f a l l  model, were used f o r  

these  examples. The examples are concerned w i t h  the  sho r t -  

per iod  long i tud ina l  mods of the a i r p l a n e ,  which is u s u a l l y  8 

flliken, J3.p. D y n a m i c  S t a b i l i t y  and Control  
Researcho Repo Bo, Cal-39p Corne l l  Aeroe Lab,, Inc. ,  
(Presented a t  Th i rd  I n t e r n a t i o n a l  J o i n t  Conference of the 
R.A.S.-I.A.S., Brighton, England, Sept ,  3 - 4 ,  1951) .  
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well-damped mode 

t i o n ,  Thus, the 

def ined by a f a i r l y  simple t r a n s f e r  fun@- 

comparisons of methods presented h e r e i n  are 

made s o l e l y  on the  b a s i s  of r e s u l t s  obtained from a n a l p i s  

of this l ong i tud ina l  mode. It is  recognized t h a t  compli- 

ca t ed  o s c i l l a t i n g  systems may be analyzed and Greater  

accuraelies obtained by a l l  t he  methods repor ted  a t  the  

expense of a more extensive a n a l y s i s ,  The comparison of 

methods presented he re in ,  w, may be a l t e r e d  when 

appl ied  t o  more complicated systems 

m o re oVev 

The methods a r e  discussed wi th  regard  t o  the t i m e  

requi red ,  the means f o r  f a c i l f t a t i n g  tlnelr use,  and the 

l i m i t a t i o n s  on t h e i r  a p p l i c a t i o n ,  Some opinions presented 

a m  not d i r e c t l y  substantfaeed by quan t f t a t fve  r e s u l t s  bu t  

are based on experience i n  the use of the methods. The 

r e s u l t s  obtained ape compared t o  give some ind ica t ion  of" 

the  relative accuracy of the  methods, exclusive o f  any 

Inaccuracy i n  the measurements 



CHAPTER I r  

BASIC CONCEPTS 

It i assum d h e r e i n  t h a t  the  re der is f a m i l i a r  w i t h  

t he  concepts and a p p l i c a t i o n  of the Laplaos transform t o  

l i n e a r  system. 3 

The frequency response of a dynamic system defines 

i t s  s t eady- s t a t e  response under the inf luence  of an input  

appl ied  i n  the  form of" a s inuso ida l  o s c i l l a t i o n  o f  cons tan t  

amplitude and per iod ,  An a n a l y t i c a l  expression which def ines  

the  frequency response throughout the frequenc.9- range is, 

when def ined in terms of the Laplace transform va r i ab le  p,  

the transfer function of the  system. The t r a n s f e r  func t ion  

not  on ly  expresses  the frequency response b u t  i t  may be 

s a i d  t h a t ,  f o r  l i n e a r  systems, any a r b i t r a r y  input  func t ion  

operated on by the t r a n s f e r  function determines the 

v a r i a t i o n  in the output  func t ion .  Conversely, if the input  

and output  a r e  known, it should be poss ib le  t o  determine an 

ernalyt i o a l  expression ich a?elates the two, t h a t  is, the 

t r a n s f e r  func t ion ,  The present  paper f a  concerned with 

s e v e r a l  methods of ob ta in ing  the t r a n s f e r  func t ions  of 

a i r c r a f t  f rom measured inputs  and m ~ p o n s e s  The methods 

3 Murray F. ffardner and John Le Barnes, T rans i en t s  in 
Linear Systems Studied by the Laplace Transformation, 
LumpBd-Constant Systems. Vol. I, John Wiley and Sons, I m C ,  
1942 * 

6 
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presented he re in ,  i n  genera l ,  mag be divided into two 

c l a s s e s :  methods t h a t  first determine the frequency 

response of  the system and methods t h a t  determine the t r a n s -  

f e r  func t ion  without the determinat ion of the  frequency 

response e 

The NACA s ign  convention, as  shown i n  Figure Is 

assumes e leva top  trailing edge down a s  p o s i t i v e .  Therefore,  

a p o s i t i v e  e l e v a t o r  deflection w i l l ,  i n  general ,  produce 

negative s t a t i c  responses, I n  order  t o  conform w i t h  the 

usua l  p r a c t i c e  o f  p l o t t i n g  frequency-response da t a ,  phase 

angles have been shifted 180 ( t h a t  is, zero phase angle a t  

zero  f requency) .  



8 



CEAPTER 111 

DESCRIPTION AND DISCUSSION OF METHODS 

Sinuso idal-Re sponse Method 

O f  t h e  seve ra l  poss ib l e  ways t o  obta in  the  frequency 

response of a system, an QbVliOuS way i s  t o  o s c i l l a t e  sinuaof- 

d a l l y  a c o n t r o l  sur face  a t  a constant  amplitude and frequency 

u n t i l  a s teady-s ta te  response o f  the a i r c r a f t  has  been 

obtained and measure t h e  amplitude and phase r e l a t i o n s h i p  

between input  and output  s i n e  waves, The process may then 

be repea ted  throughout t he  frequency range of i n t e r e s t ,  

The t h e o r e t i c a l  a p p l i c a t i o n  of t h i s  method t o  the determi- 

na t ion  o f  the c o e f f i c i e n t s  of the  t r a n s f e r  func t ion  is given 

by C ~ - e e n b e r g , ~  and a g raph ica l  method of determining t r a n s -  

f e r  func t ions  from frequency-response da t a  i s  given b y  

Lees. 5 

The s inusoidal-response method r e q u i r e s  the l e a s t  

computation t i m e  and t h e  most f l i g h t  time of t he  methods 

r e p o r t e d  h e r e i n ,  I n  an e f f o r t  t o  reduce the: la rge  amount of 

H a r r y  Greenberg, A Swvey of Methods f o r  Determining 
S t a b i l i t y  Parameters o f  an Airplane From Dynamic F l i g h t  
Msasukements. NACA TI? 2340, 1951, 

5 Sidney Lees, Graphical Aids f o r  the Graphical 
Repsesentatfon of Functjlons of the Imaginary Argument 
M,I .T,  Instrumentat ion Labs Engfneering Memo, E-25 ,  
Feb, 1951. 

9 
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f l i g h t  t e s t i n g  requi red ,  8 number of  s i m p l i f i c a t i o n s  from 

the usua l  technique have been attempted. One procedure 

t h a t  viab i nves t iga t ed  involved obta in ing  sinusoidal-response 

d a t a  by cont inuously record ing  the  c o n t r o l l e d  input  and the  

response o f  the a i rp l ane  while slowly changing the  frequency 

of t h e  input  t o  cover the range of f requencies  deaiped, 

Appendix A presen t s  an es t imat ion  of t h e  e r r o r s  encountered 

a t  s e v e r a l  values  of r a t e  o f  change of fo rc ing  frequency 

when such a freqtJenag-modulated input  is  appl ied  t o  a 

dynamic system defined by 8 second-order l a g .  From t h i s  

a n a l y s i s  and a l s o  from f l i g h t  r e 8 u l t s ,  i t  appears t h a t ,  f o r  

sya tems having near c r i t i c a l  damping, s a t i s f a c t o r y  r e s u l t s  

may be obta ined ,  I n  add i t ion ,  it appears t h a t  a human p i l o t  

may generate  an adequately near s inuso ida l  input  without the 

afd of s p e c i a l  equipment, p a r t i c u l a r l y  i f  he has a f a i r l y  

p rec i se  i n d i c a t i o n  of t h e  amplitude of h i s  s t i c k  motion, A 

t y p i c a l  record obtained by us ing  these  techniques is pre-  

sented i n  Figure 2 .  The deviation from 8 pure sinusoidal 

input  fs obvious although the f i l t e r i n g  supplied by the  

afrfrarne results i n  a R ~ F I P ~ ~  . 
6 S t e r n f f e l d  o u t l i n e  a method 

Robert T, Jones and 
fop  Predic t ing  the S t a b i l i t y  
Control led A i r c ~ a f t  Based on 
of t h e  C h a r a c t e r f s t l c s  of an 
1943 * 

s inuso ida l  response. Jones and 

f o r  determining the amplitude 

Leonard Sternf  i e l d ,  A Method 
i n  Rol l  of Automatically 
the Experiment a1 Determination 
Automatic Pilot. NACA TN I q O l ,  
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of  an equiva len t  s ine  wave when the a c t u a l  pe r iod ic  wave h a s  

an i r r e g u l a r  form. I n  genera l ,  however, i t  has  been poss ib le  

t o  o b t a i n  r e s u l t s  cons i s t en t  with the accuracy of the 

measurements by f a i r i n g  t h e  peaks of the o s c i l l a t i o n s  i n  the 

input  and output  and ob ta in ing  the  double amplitude of t hese  

q u a n t i t i e s  from the f a i r i n g  by averaging over a number of 

succeasive ha l f - cyc le s .  The mean value about which the  

o s c i l l a t i o n s  occur i s  e s t ab l i shed  from the f a i r i n g  of the 

peak amplitudes,  and the time l a g  of the output behfnd the 

input  is determined b y  averaging the  l a g  read along t h i s  

mean value over a number of successive ha l f -cyc les .  The 

period of the  o s c i l l a t i o n s  i s  similarly obtained by 

averaging:, The method of measurement of  t h e s e  q u a n t i t i e s  i s  

i l l u s t r a t e d  i n  Figure 2 .  

The importance of averaging over su@cessive h a l f -  

c y c l e s ,  when e s t a b l i s h i n g  the  time lag, i s  shown i n  Figure 2 

where, i n  some cases ,  the  v e l o c i t y  o f  the input 4s con- 

s ide rab ly  different i n  one d i r e c t i o n  than in the  o t h e r  

the r e s u l t  t h a t  the time l a g  read  a t  one p o f n t  w i l l  differ 

cons iderably  from tha t  read one-half period later. The 

average, however, appears,  fn most cases ,  t o  r ep resen t  

adequately the  a c t u a l  time l a g .  

The frequency-response parameters  may be determined 

f r o m  the averaged v a l u e s  thlaough use of the following 

r e l a t i o n s :  



2n 
Per €od Frequency = 

- h p l i t u d e  of output 
Amplitude of input  

Amplitude r a t i o  - 

Lae5 
360 Period Phase angle = ( 3 )  

F l i g h t  records f o r  a fighter a i rp lane  were obtained 

with t h e  p i l o t  manually applying an approximate s i n e  wave o f  

varying frequency t o  the e l e v a t o r ,  A aampls o f  the f l i g h t  

da ta  is  presented i n  Figure 2 and some pe r t inen t  geometric 

c h a r a c t e r i s t i c s  of the  a i rp l ane  and the f l i g h t  cond i t ion  

under which the da t a  were obtained ape l i s t e d  i n  Table I, 

Data po in t s  obtained by the foregoing a n a l y s i s  are  presented 

i n  Figure 3 toge ther  w i t h  a suggested f a i r i n g .  The s c a t t e r  

i s  considered t y p i c a l  f o r  t h i s  technique (p i lo t - induced  

i n p u t )  These da ta  p o i n t s  r ep resen t  p o ~ t f o n s  of two f l i g h t s  

of t he  f i g h t e r  a i rp lane  and a recording t i m e  o f  about 

250 seconds, A t y p i c a l  example of the time r equ i r ed  t o  

reduce the f l i g h t  da t a  t o  a frequency-response c u ~ v e  by 

t h i s  method is shown in Tabla 11, Typical  times a re  a l s o  

presented i n  the tab le  f o r  o the r  methods t o  be discussed 

sub se que n t  1j e 



TABLE I 

CHARACTERISTICS APJD FLIGHT CONDITIONS OF AIRCRAFT 

USED FOR LONGITUDINAL TESTS 

Condition 

- 

deight, l b  . . . . . . . .  
T a i l  length, f t .  . . . . .  
ding area,  sq f t  . . . . .  

sq f t  . . . . . . . . .  
Aspect r a t i o  . . . . . . .  
ding span, f t  . . . . . .  

Horizontal t a i l  area,  

Yean aerodynamic chord, 
f t . .  . . . . . . . . .  

Pressure a t t i t ude ,  f t  . . 
‘Ilach number . . . . . . .  
Yoment of i n e r t i a  i n  

Sweep, deg . . . . . . . .  
Aircraft density fac tor  . 

2 pi tch,  s lug-f t  . . . .  

._ + 
Fighter 

12,840 
16.0 
250 

66.2 
4 - 975 
35 -25 

7.45 
10,000 

0.60 

17,311 
0 

122.0 

+ 
Transport 

23,000 
37.0 

988.9 

179.2 
9.13 
95.0 

11.5 
5,000 
0.268 

91,690 
15.5 
30.6 

Free-fal l  
model 

1, 030 
3.7 
9 .O 

1.72 
4.0 
6 .o 

32, ooo 
0 725 

50 
45 .O 

2,730 

1.5312 
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Figure 3.- Sinusoidal-response data points of fighter airplane at 
M = 0.6 and hp = 10,000 feet. 
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Four ie r  Analysis of Transient Response 

Another well-known method of determining the f requency 

response is t o  determine the coe f f i c i en t s  of the Fourier 

transform of‘ the i n p u t  and output functf..ons over a frequency 

range b y  analyzing the response (as a f u n c t i o n  of time) of 

the a f r c r a f t  to an a r b i t r a r y  i n p u t .  The process is inill- 

c a t e d  b y  the  expressfan 

which laepmsents the ratio of the Fouroler EntegPal o f  the 

output t o  the F o u r i e r  i n t e g r a l  of the i n p u t .  Tha d e r i v a t i o n  

and s s v e p a l  a p p l l c a t P o n s  of t h i s  method have been extensively 
covepad by o the r  p t i p e ~ s ,  7 9  8 

This method, 8 s  v ~ s s l l  a8 the sinusoidal. method p rev f -  

ously described, g ives  d a t a  points Ira ampl i tude  r a t i o  and 

p h ~ m  ang le  a t  8 nuinbela of d i sc re t e  frequencies through 

whbeh a f a i p i n g  can be mads, Transfey functfona may be 
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obtained from the frequency-response curves by the same 

methods a s  were mentlonsd f o r  the s inuso ida l  response.  

I n t e g r a t i o n  o f  the Four i e r  i n t e g r a l  o f f e r s  ea choice 

of  methods which may bs divided i n t o  two genera l  ca t egor i e s :  

(1) methods which d iv ide  the t r a n s i e n t  i n t o  f i n i t e  i n t e r v a l s ,  

approximate the curves wi th in  sack i n t e r v a l  with an a n a l y t i -  

c a l  expression, perform the  ind ica ted  i n t e g r a t i o n  a n a l y t f -  

c a l l y ,  and swn the  r e a l  and imaginary p a r t s  of these 

i n t e g r a l s ;  and ( 2 )  methods which express  e-Jwt In trfgono- 

met r ic  form, multiply these s ine  and cos ine  func t ions  by  the 

value of q ( t )  a t  corresponding t imes,  and i n t e g r a t e  the 

product  curve^ t o  determine the  r e a l  andhimaginary terms of 

the Four ie r  i n t e g r a l .  

Solu t ion  of t h e  Fousier  i n t e g r a l  by e i t h e r  approach 

involves  the jud ic ious  choice of time i n t e r v a l s ,  For  the 

a n a l y t i c a l  r ep resen ta t ion  method, 8 choice i n  t he  form of' 

the  a n a l y t i c a l  expression must also be  made. As t h e  chosen 

expression becomes more complex, the  accupacy o f  the d e t e r -  

minat ion of the  frequency response gene ra l ly  increases  but # 

a8 the work involved l ikewise increases ,  a compromise 

usually is necessary.  

The fo l lowlng  a r e  s eve ra l  methods which have been 

s tudied  and I l l Q s t r a t e  the var ious approaches t o  the Four i e r  

t ransformation,  



Manual Method: Analytical. i n t e g r a t i o n  within - d i s -  

Crete i n t e r v a l s  - of cubic r ep resen ta t ions  - -  of 8. t r a n s i e n t  e 

A method of r ep resen t ing  a t r a n s i e n t  f o r  s o l u t i o n  of the  

Four i e r  i n t e g r a l ,  a s  developed by Ordway E, Gates, J T ~ ,  of 

the Langley Laboratory, involves  the  d i v i s i o n  o f  t h e  

t r a n s i e n t  i n t o  d i s c r e t e  time i n t e r v a l s  chosen t o  f a c i l i t a t e  

accura te  approximation of each por t ion  of t h e  t r a n s i e n t  b y  

cubic (or lower-order) polynomfals. The Four ie r  i n t e g r a l  

w i l l  then be 

where 
2 q n Q t )  = ant3  .b b,t f c,t -+ dn 

The values of the c o e f f i c i e n t s  an, bn, cnp  and dn 

f o r  any given n may be determined from the c h a r a c t e r i s t i c s  

of t h e  t r a n s i e n t  wi th in  the i n t e r v e l  t, t o  tn+p. For the  

genera l  ca se ,  the i n t e r v a l  is subdivided i n t o  t h i r d s  and 

values  of t h e  t r a n s i e n t  q ( t )  a t  these  d iv id ing  p o i n t s  

a f f o r d  fou r  cubic equa t i o n s  having f o u r  unknowns 
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( an ,  b,, Cns and dn)e The advantage of us ing  equal  

d i v i s i o n s  wi th in  the i n t e r v a l  t, t o  t,+l i s  t h e  @age of 

the s o l u t i o n  of t h o  four equat ions  by means of " S U C C 8 8 8 i 8 0  

sub t rac t ion ."  (See i l l u s t r a t e d  example i n  appendix B . )  If, 

however, the  s lope o f  the t r a n s i e n t  is  zero (2 = 0) wi th in  

the i n t e r v a l ,  t h i s  condi t fon  should be used a8 we11 a s  t h e  

value of  the t r a n s i e n t  g ( t )  a t  t h i s  p o i n t .  The c o e f f i -  

c i e n t s  thus determined give an equat ion t h a t  may be used to 

check the f i t  of the t r a n s i e n t  by the  expreasion before  

f u r t h e r  work is i n i t i a t e d .  

This  approach t o  the 'tsvaluation of' t h e  Four ie r  

i n t e g r a l  may be expressed a n a l y t i c a l l y  as follows: 

where 

and 
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The s u b s t i t u t i o n  of  d i s c r e t e  values  of frequency w 

gives  t h e  r e a l  and imaginary terms of  the  Four i e r  transform 

of t h e  t i m e  tranaJisnt q ( t ) ,  and the r e l a t ionsh ips  of 

amplitude and phase a r e  given a s  

i 

As an  i l l u a t r a t i o n  o f  t h i s  method, a numerical 

example i s  presented i n  appendix €3. A method of  t h i s  type 

i s  not  very adaptable t o  machine methods because some d i s -  

o r e t i o n  is  requi red  i n  the, subdivis ion of the  t r a n s i e n t ,  and 

the  t i m e  i n t e r v a l s  a m  not n e c e s s a r i l y  equal .  A small 

amount of t r i a l  and e r r o r  may be sequfred i n  t h e  choice of 

these t i m e  , i n t e r v a l s ,  p a r t i c u l a r l y  i n  the v i c i n i t y  of points  

of i n f l e c t i o n ,  The cubic r e p r e s e n t a t i o n  has  the  mer;Lt of 

be lng  the lowest-order polynomial to con ta in  a p o i n t  o f  

i n f l e c t i o n .  T h i s  approach t o  the s o l u t i o n  of the Fourfer  
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i n t e g r a l  has  t h e  advantage of providing an a n a l y t i c a l  r ep re -  

s e n t a t i o n  t h a t  may be d i r e c t l y  compared with t he  t r a n s i e n t  

and of providing an exact  a n a l y t i c a l  i n t e g r a t i o n .  On the 

b a s i s  of comparable accuracy, t h i s  approach is i n  many 

Instances s h o r t e r  than  the c l a s s i c a l  numerical i n t e g r a t i o n  

method t h a t  follows e 

Manual Method: Numerical i n t e g r a t i o n  - of product 

curves - of CJ( t ) s i n  ut - and q( t ) c o s  ut. The usua l  manual 

method, which a l s o  is t he  b a s i s  of some of the  machine 

methods, r e q u i r e s  a l a rge  amount o f  g raph ica l  OF numerical 

i n t e g r a t i o n  because no at tempt  i s  made t o  ob ta in  a continuous 

a n a l y t i c  expression f o r  the t r a n s i e n t  u n t i l  it has reached a 

s teady  s t a t e ,  If the input  i s  r e s t r i c t e d  t o  a sfmple 

analytical express ion  ( f o r  example a step input  

8 constant  value from zero time t o  i n f i n i t y ) ,  the graphica l  

or numerical fn t eg ra t fon  of  the input  i s  eliminated and the  

time requi red  f o r  the s o l u t i o n  of equat ion (4) i s  roughly 

reduced b y  one -ha l f ,  For the purpose of g raphica l  o r  

numerfcal. i n t e g r a t i o n ,  equat ion  (4) may be reduced t o  an 

expression involving r e a l  i n t e g r a l s  of the form 
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where the fPeqU6nCg-respons@ r e l a t i o n s h i p s  a r e  given by 

equat ion ( 7 ) .  

The numerical and g raph ica l  method f o r  the s o l u t i o n  

of the Fourier i n t e g r a l  and an example of i t s  use i s  given 

by Greenberg9 and a more complete d i scuss ion  Is given by 

Schetzer.  10 

A ru le  of thumb f o r  choosing t h e  proper time i n t e r v a l  

i n  analyzing f l i g h t  d a t a  has been suggested b y  experience 

gained i n  the  use of th i s  technique. The r u l e  i s  r e s t r i c t e d  

t o  t h e  methods of  i n t e g r a t i o n  adaptable t o  the manual. 

methods, for example, Simpson's three-point  r u l e .  In  

genera l ,  a chosen t i m e  i n t e r v a l  A t  will give reasonable 

r e s u l t s  up t o  a frequency o f  so t h a t  a t i m e  i n t e r v a l  

of 0.10 second mag be expected t o  produce good r e s u l t s  up t o  

a frequency of about 6 r a d i a n s  pe r  second, The proper 

choice of t i m e  i n t e r v a l s  i s  obviously dependent on the 

c h a r a c t e r  of the input and output ;  however, the foregoing  

pule has been found u s u a l l y  conserva t ive  except i n  casea of 

extremely e r r a t i c  v a r i a t i o n s  i n  t h e  input  and output ,  The 

h ighes t  frequency a t  which rea8onable r e s u l t s  might be 

expected w i l l  a l s o  depend upon the c h o k e  of forms of 

5 A t  

Greenberg, l o c ,  e f t .  
I- 

lo J ,  D ,  Schetzer ,  Notes on Dynamics f o r  Aero- 
d p a m i c i s t s  @ Rep * No * S M S - & O ~ ~ ~  Douglas A i r c r a f t  Co * , Inc * , 
>rove 19, a g g i .  



In t eg ra t ion ,  a super ior  i n t e g r a t i n g  method affomling us0 o f  

g r e a t e r  time i n t e r v a l s  f o r  comparable r e s u l t s  e 

When Simpson! s three-point  ~ u h e  f o r  numerical %n%e- 

@ ; r a t i o n  o r  a planimetap are  used f o r  t h i s  method, the  time 

r equ i r ed  may be est imated by  another r u l e  gained from 

experience.  FOP .a t y p i c a l  case where the  short-per iod 

longf tua ina l  response t o  a s t e p  or pulse  fnput i s  analyzed, 

the time requipsd  t o  o b t a i n  the  amplitude and phase anG;be 

of the output  ( o n e )  function. a t  8 f requencies  b y  us ing  

24 data po in t s  h a s  been found t o  be about 6 man-hours f o r  

an expepienced u s e r e  Tabulated values  of s i n  w t  and cos  ut 

PWrerPe used and the  time pequired t o  make 'these t a b u l a t i o n s  was 

not included in.  the e s t ima te ,  

Punch-card method ( IBM) Ce r t a in  I n t e r n a t i o n a l  

Business Machines (descr ibed  subsequently and r e f e r r e d  t o  

a3  13M machines) o f f e s  a. time-saving solution t o  the process  

o u t l i n e d  in t he  previous s e c t i o n  with u s u a l l y  more accura te  

r e s u l t s  QY-W a g r e a t e r  fsequency range s ince us0 of IPIQPQ 

compP%cated and a c c u r a t e  methods of numerical Integration 

are? feasible Weddle g s  seven-point rule" as derived from 

the Newton-Cotes quadrature formula h a s  been employed and I s  

an example of such a method, 



By us ing  e s s e n t i a l l y  the same psocedure a s  the manual 

method which I n t e g r a t e s  t h e  product curves  q ( t ) s i n  w t  and 

g ( t ) c o s  u t ,  a set of "master" ca rds  are punched whfch d e f i n e  

the  values  of t h e  cosine and ,sine func t ions  f o r  the values 

of M t  s e l e c t e d  and a l s o  def ine  the numerical i n t e g r a t i o n  

process used, Since values  of u t  determine the values  of 

t h e  t r igonometr ic  func t ions  punched on the cards ,  the 

fr%quency range t o  be evaluated may be varPied b y  changing 

the time interval i n  inverse  propor t ion ,  Cards a re  1ikewirJe 

punched f o r  the t i m e ,  f unc t ions  of' input and output  (and 

these  must obviously be punched f o r  each separa te  analyzed 

recosd)  I) 

The c a l c u l a t i o n s  involved i n  t he  F o w i e r  ana lys i s  

method a s  performed on the  IBM machines t h a t  a r e  a v a i l a b l e  

at t he  Langley Laboratory a re  a s  follows: 

(1) Time response d a t u  a re  peroforated o n t o  IBM c a r d s  

by  us ing  a ca rd  punch. 

( 2 )  Correc t  t r a n s c r i p t i o n  of da t a  onto cards  is 
e 

checked by a v 

( 3 )  Orig ina l  deck of ca rds  r ep resen t ing  time-response 

d a t a  18 reproduced, one deck for each frequency t o  be 

analyzed, by  using a Pepmducer. 

(4.) I n t e g r a t i n g  f a c t o r s  and t r igonometr ic  func t ions  

a m  t r a n s f e r r e d  from the "master" deck t o  each deck obtained 

f rom s tep  f 3 )  by uafng the reproducer.  
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( 5 )  Product func t ions  ( q ( t ) s i n  tat and q ( t ) c o s  c s t )  

a r e  obtained by an e l e c t r o n i c  c a l c u l a t o r ,  

( & )  End c o r r s c t f o n s  and i n t e g r a t i o n  c o r r e c t i o n s  a m  

appl ied  by u s i n g  a s o r t e r  and t h e  electronic c a l c u l a t o P e  

( 7 )  Four ie r  s u m a t i o n  of t e r n s  obtafnsd for each 

fmquency alae made b y  us ing  a t a b u l a t o r  ( a l p h a b e t i c a l  

accounting machlne ) e 

(g) Summary ca rds  of amplitude and phase r e l a t i o n -  

sh ips  a re  obtained on the e l e c l r o n l c  c a l c u l a t o r .  

( 9 )  F i n a l  frequency d a t a  of input  and output  

func t ions  a re  typed out b y  the  t a b u l a t o r .  

Some aspec ts  of t h i s  process  a s  appl ied  t o  l a t e r a l  responses 

having s t eady- s t a t e  osc i 1 l a t o r y  responses  a r e  descr ibed i n  

more d e t a i l  in. a r e p o r t  by Convafr .  12 

The time requi red  f o r  t h i s  IBM equipment t o  perform 

the operations ind ica ted  has been found t o  be 5 machine-hours 

f o r  t he  determinat ion of da ta  a t  12 f requencies  f o r  one 

f u n c t i o n  by us ing  one s e t  of machines and. 241 d a t a  points 

{ 12-aecond records us ing  OaO5-second i n t e r v a l s )  e This t h e  

was averaged over sevep.81 perforaances and included a l l  

checks and c o r r e c t i o n  of  mistakes,  

l2 1G. P ,  Breaux and E ,  L a  Z e i l l e r ,  Dynamic Response 
P a r t  111 - Presenta t ion  and Program on t h e  3-36 Arpplane: 

Theosetfcaf Consfderat ions of the Trans ien t  Analysis Nethod 
Employed f o r  Obtaining Frequency Response Func t f o n s  From 
Flight Data ,  Rep Mo, FZA-36-i959 Consolidated Vultee 
~ i r ~ r n f ' t  COPP. ,  ~ e b .  G 9  1952~ 



Method the electromechanical  Four ie r  

syn thes i ze r .  The electromechanfoal Fourier  syn thes i ze r ,  

o r i g i n a l l y  b u i l t  and used by the  Massachusetts I n s t i t u t e  of 

- 

Technology to‘ produce t ransient-response curves from 

frequency-response d a t a ,  was designed t o  perform t h e  

following opera t  ion: 13 

where 

qn amplitude of n t h  kamnonfc 

phase angle of nth harmonic @n 
P angular  displacement of fundamental 

The application of t h e  Four ie r  synthesizer t o  the  eva lua t ion  

of the Four ie r  i n t e g r a l  may be seen from the  fol lowing 

de r iva t ion .  

The genera l  form of analysis assunes t h a t  any  a rbf -  

t r a r y  curve of input  o r  output  may be represented  b y  a s e r l e e  

of s t e p  func t ions  with a oonstant  f i n i t e  time lag between 

the steps:  

13 R .  C. Seamans, Js,, E. P.  Blasfngame, and 6 .  C ,  
Clementson, The Pulse Kethod f o r  t h e  Determinatlcn of A i r -  
craft Dynamic Performance, Jour .  Aero. Scl , ,  v o l e  lT9 no. 1, 
J e n ,  1950, pp. 22-38. 
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The s t e p  approximation 1 s  the  same a s  t h a t  used i n  the  

a n a l y t i c a l  method of ob ta in ing  the  frequency response from a 

t i m e  response t o  a s t e p  input& and a l s o  the  same a s  t h e  

ex tens ion  o f  this a n a l y t i c a l  method t o  an a r b i t r a r y  input .  15 

Thus, t h e  Fourier  i n t e g r a l  of an a r b i t r a r y  function I n  

t h e  q ( t )  may be approximated i n  the  form 

Robert C. Seamans, J r , ,  Benjamin G ,  Rromberg, and 
L. E ,  Payne ,  Application of  the Perfosmance Operator t o  
A i r c r a f t  Automatic Control.  J o u r .  Aero. S c l . ,  v o l .  l5# no. 9, 
Sep t ,  19ld, PP. 535-555. 

l 5  Howard J ,  Curfman, J r - e 9  and Robert A ,  Gardiner, 
Method f o r  Determining the  Frequency-Response C h a r a c t e r i s t i c s  
of an  Element o r  System From the System Tpansient Output 
Response to  a Known Input Function. XACA Rep. 964, 1'350. 
(Supersedes WXCA TIT 1964.) 



Therefore,  

I n  t r igonometr ic  form 

Aqn( t ) s in  A t  - ( r t  2 Q(u) = - - 
W 

n = 1 , 2 , 3 , 0 e .  

A t  - o 
n=1,2,3, ... 

This r e l a t i o n s h i p ,  a s  can  be seen by  comparison of  

equation ( l l a )  with equat ion (3), may be handled by the 

Fourier synthes izer  ,, 

The number of p o i n t s  t h a t  may be used conveniently t o  

r ep resen t  the time-response curve is determined by the 

number of resolvers available i n  t he  machine t o  simulate the  



convolution process The machine inves t iga t sd ,  eaploging 

214 r e s o l v e r s ,  requi red  14 t o  8 hours t o  o b t a i n  t h e  frequency 

response of a system from any a r b i t r a r y  input and output  

t h a t  may be represented  b y  24 equa l ly  spaced s t e p s .  The 

frequency da ta  a r e  presented b y  the machine a s  curves  of the  

Four ie r  transforms of t he  r e a l  and inaginary  coef f  i c f e n t s .  

From these curves ,  values  a t  any number of f requencies  may 

be chosen f o r  the determinat ion of  phase angle arid amplitude, 

In  v iew of' the  f a c t  t h a t  the Four ie r  synthes izer  

u t i l i z e s  24 equa l ly  spaced s teps ,  i t  is llmfted t o  t ran-  

s i e n t s  t h a t  may be adequately approximated thereby.  Although 

the frequency range p l o t t e d  by the synthes izer  i s  from 0 t o  

n/at rad ians  per  second, t he  results do no t  appear t o  be 

accura te  to  any higher  frequency range than i s  quoted f o r  

(. = *)e 

the  manual method which uses  Siirapson's r u l e  

Coradf harmonic analyzer e The Coradf harmonic 

ana lyzer l6  is a semimanually operated t r a c i n g  machine which 

b y  the  use  of s e v e r a l  r o l l i n g  spheres may be used t o  evalu- 

a t e  the Four i e r  i n t s ~ r a l  of a function, The model investi- 

gated (Dent-Draper Model, Rol l ing  Sphere type,  X I C O  

Instrument Company, Cambridge, &!ass e ) employed f'ltve spheres  

which, through use of var ious gears ,  may measure the 

Joseph Lipka, Graphical and Mechanical Computatlon. 
John Wfley and Sons, Inc . ,  1318, 



harmonic content  of a curve wi th in  a range of  1 to 50 has- 

monlics. Detafls of t h e  opera t ion  of an e a r l i e r  model of 

the Coradk 3arrnonlc analyzer  have been repor ted ,  17 

Throu& t he  1186 of the  Corarii harmonic analyzerp the  

time t r a n s i e n t  i s  t r aced  S ~ o m  the  poin t  of i rx l t f a t ion .  

(initial. condi t ions  ze ro )  t o  the po in t  of s t eady- s t a t e  

response and the following i n t e p a l s  are eva lua ted :  

( 12b ) 

These i n t e g r a l s  are p r o p o r t i o n a l  t o  the r e a l  and imaginary 

part; of the Four ie r  integral of the  curve being analyzed 

The proportionality may b% seen by i n t e g r a t i n g  the Four i e r  

i n t e p a l  b y  p a r t s  t o  change vas iab les  30 t h a t  

- 
'7 Dayton C. & i l l e r 9  The Hemic i  Earmonic Analyzer 

and Devices f o r  Extending and Facilitating I t s  U s e ,  J o u r .  
Franklin Inst., vel, 182, no, 3, Sept. 1916,  pp.  285-322. 



32 

where f o r  a l l  p r a c t i c a l  pusposes t he  first term is zero. 

In the use of' the Coradi harmonic analyzer ,  the  t e r m  q ( t )  

€ a  p l o t t e d  along the, y-axis; thezrefore, equation (13) may 

be written as fol1ows: 

- where t h e  eecond term is zero s ince 

nometric form, equa t ion  ( & )  becomes 
yss - yme In t r l g o -  

80 t h a t  s u b s t i t u t i o n  of equat ions  ( 1 2 )  i n t o  equation (15) 

gives 

2nn where w = - and t, 1s defined 8s the time in t ekva l  
t, 

over which the  c w v e  w a 8  analyzed. The cormstrant l / C  1s 

the scale f a c t o r  between t h e  func t ion  befng analyzed an6 

the displacement of the  d i a l s  o f  t h e  analyzes.  In. genera l ,  
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because onlg t h e  r a t i o  of ou tpu t  t o  Input  is desfred, the 

indfvfdual  scale factors need not  be computed provided both  

quan t f t f ea  are pRotted t o  the same s c a b .  

This analyzep appeasa t o  produce the Four i e r  c o e f f f -  

c f e n t s  vdthin an accuracy dependent upon the kinemat%c 

accurpacy of t h e  machine (which i s  p r imar i ly  a f f e c t e d  by  

slipping of the r o l l e r s  but a l s o  t o  some ex ten t  by weas) 

and the  a b i l i t y  of the opera tor  and machine t o  fol low 

e x a c t l y  the t r a c e  being tanalgsed, The operatop is requfred 

t o  fo l low the c u r v e  in t he  d i r e c t i o n  of  t h e  o r d i n a t e  q ( t )  

f le :  the machine, operated by a microswitch, au tomat iea l ly  

traverses along t h e  absc i s sa  t, Accurate t r ac ing  becomes 

d i f f i c u l t  when s t eep  s l o p e s  ( l a r g e  values  o f  dq/dt)  m e  

experienced, and a c e s t a i n  amour,% of r o l l e r  slipping and 

human e r r o r  should be expected, This  inaccuracy 9s a l l e v i -  

a t e d  somewhat by  averaging the values  obtained from th ree  

o r  more repeated t r a c i n g s .  Experience with the  machine has 

indfca ted  t h a t  the accu rac i e s  obtained a r e  about the same a8 

those obtained by the manual methods, 

The time required t o  obtafn the F o u ~ i e r  c o e f f f c i e n t s  

of one func t lon  q ( t )  f o r  15 harmonics has  been found t o  be 

about 4 hours f o r  an experienced operatorPo 

includes the t i m e  t o  a%ine  c o r r e c t l y  t h e  axes o f  t he  curye 

with the machine, t o  connect the c o ~ m c t  s e t  of gea r s  f o r  

This es t imate  



each 5 harmonics, and t o  t r a c e  the curve t h r e e  times far 

eaoh s e t  of 5 harmonics, 

A cons ide ra t ion  i n  the  use of t h i s  machine i s  i t s  

a b i l i t y  t o  produce the FourHer c o e f f i c i e n t s  f n  a compara- 

t i v e l y  sho r t  tfme, partfculBiP1y w i t h  e r r a t i c  func t ions  t h a t  

WQUM r equ i r e  ve ry  sma l l  t i m e  i n t e r v a l s  t o  r ep resen t  accu- 

r a t e l y  t h e  f u n c t i o n  f o r  use by o the r  methods. 

no t ing  is  t h a t ,  f o r  e r r a t i c  func t ions ,  t h e  average o f  

SeVgPal t r a c i n g s  should produce a more mliab2.e r e s u l t ,  I n  

the use of the Coradi harmonic analyzer ,  t h e  l i m i t a t i o n  t h a t  

the func t ion  must reach s teady  s t a t e  s t i l l  a p p l i e s ,  

A po in t  worth 

Curve - F i t t  %ng Methods 

f n  the methods herein c a l l e d  c u r v e - f i t t l n g  methods, 

the fosm of  the  t r a n s f e r  func t ion  i s  d i r e c t l y  ox" i n d i r e c t l y  

assumed and t h e  c o e f f i c i e n t s  of t h e  t r a n s f e r  f u n c t i o n  are 

determined by l eas t - squares  methods o r  a combination of 

leas t - squares  and direct-computatfon methods, VJith a 

number of these  methods, the a n a l y t i c a l  expression c a l l e d  

the Lransfer  fune t fon  i s  obtalneb without f i rs t  ob ta tn ing  

frequency-response d a t a ,  

The Donegan-Pearson method r e q u i r e s  a d i r e c t  assump- 

t i o n  a s  t o  the form of t h e  t r a n s f e r  f u n c t i o n  and solves f o r  

the coeff f c f e n t s  by a u b s t i t u t i n g  i n t o  the t r a n s f e r  f u n c t i o n  

%he input and the output t i m e  func t ions  and t h e i r  i n t e g r a l s *  
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On the  o t h e r  hand, the exponential-approximation method 

so lves  f o r  the c o e f f i c i e n t s  o f  a n a l y t i c a l  expre8sions which 

approximate the time h i s t o r i e s  of the input  and output 

func t ions .  The t r a n s f e r  func t ion  is then  e s t ab l i shed  b y  

t ak ing  t h e  Laplace transform of these a n a l y t i c a l  func t ions ,  

In  e i t h e r  the  Donegan-Pearson o r  t he  exponential-  

approximation methods,  the order  of t h e  expressions used to  

approximate e i t h e r  t he  t r a n s f e r  func t ion  o r  the input -  

output time h i s t o r i e s  i s  unl imited.  Therefore,  t h e  r equ i r e -  

ment t h a t  t h e  f o r m  of  the t r a n s f e r  func t ion  be assumed wouhd 

appear no t  t o  be p a r t i c u l a r l y  r e s t r i c t i v e  o the r  than t h a t  

t h e  system be lfnetlre I n  p r a c t i c e ,  however, the computation 

involved i n  the  l e a s t  -squares procedure increases  r a p i d l y  

with i n c m a s e  i n  the  order  of t h e  equations and t he  equations 

tend t o  become p rogres s ive ly  more i l l - cond i t ioned .  The 

genera l  p r a c t i c e  the re fo re  h A s  been t o  assume a form f o r  e 

g iven  t r a n s f e r  func t ion ,  a s  would be predic ted  from the 

s t a b i l i t y  theory,  and t h i s  p r a c t i c e ,  in general ,  neg lec t s  

low-frequency (phugofd) modes and poss ib le  hi@-frequency 

modes due t o  s t r u c t u r a l  e l a s t i c i t y  i n  order  t o  hold the 

order  of the equat ions t o  a. minimum, Such procedures do not  

a f fo rd  d e t e c t i o n  of' these  nodes from f l i g h t - t e s t  d a t a  i n  

cases  where these  modes a m  impoptant un less  a form of  the  

t r a n s f e r  func t ion  I s  assumd i n  advance which include such 

modes, In  c o n t r a s t ,  Fourfer  a n a l y s i s  w i l l  d e t e c t  a13 
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d e t a i l s  of the frequency response which are  wi th in  the 

accuracy of the measurements and the c a l c u l a t i o n  procedure. 

The forms of' the l o n g i t u d i n a l  t r a n s f e r  func t ions  u s u a l l y  

assumed i n  conjunct ion  w i t h  the c u r v e - f i t t i n g  methods are: 

Ap2 9 Bp + C 
a -  _ -  

Ap2 + Bp + C G p + H  t D8 
6 

- =  

J n Lp2 + Mg + w - =  
Ap2 + Bp + C 8 

where the s u b s t i t u t i o n  of J W  f o r  the Laplace t ransform 

opera tor  p g ives  the frequency response of the system, 

Exponential-approximatfon methods. Since the 

~ e s p o n s e  of a l i n e a r  system t o  a step o r  impulse is a sum 

of exponent ia l s ,  an obvious method f o r  f i t t i n g  airplane time 

responses i s  the choice of exponent ia l  terms. The number of 

exponentials i s  sslec ted so t h a t  t he  Laplace t ransformation 

w i l l  g ive the same polynomial expressions a s  obtained from 

s t a b f l i t y  theoroy. Although t h i s  method can be applied t o  

any input t h a t  has a Laplace transform, i t  is most s u i t e d  

f o r  a p p l i c a t i o n  t o  response8 t o  an approximate Impulse, a 

s tep ,  and an approximate s tep  input .  The p r a c t i c a l  
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"approximate s t e p , "  a s  compared t o  the  t h e o r e t i c a l  p e r f e c t  

s t ep ,  may have a small  but f i n i t e  Lag i n  reaching s teady  

s t a t e  and may have a s m a l l  undershoot o r  overshoot l8 

response equat ion t o  a s t e p  may be represented  f o r  the case  

of t he  short-period long i tud ina l  mode o f  motion of an air- 

plane by the  form 

The 

q ( t )  = q, -+ e a t ( J 1  s i n  w t  + J2 c o s  w t )  (18) 

where a i s  the  darnping exponent ia l ,  o i s  the frequency, 

J1 and J2 a r e  the coefficients of the  in-phase and 

out-of-phase components of the response,  and q ( t )  i s  a 

func t ion  of time t h a t  expresses  the response of the system. 

I n  t he  Laplace t ransformation of the genera l  f o r m  

civen by  equat ion (18), the denominator of t he  t r a n s f e r  

func t ion  would be given by 

For l i g h t l y  damped systems where the per iod  and time t o  damp 

t o  one-half amplitude may be read d i r e c t l y  f rom the response 

records ,  i t  has  been found t h a t  d i r e c t  cabcula t ion  a f f o r d s  

'* Marvin Shfnbrot ,  A Least  Squares Curve F i t t i n g  
Xethod With Applications t o  the Calcu la t ion  of' S t a b i l i t y  
Coef f i c i en t s  From Transient-Response Data NACA TN 2341, 
1951. 
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an accura te  and r a p i d  means of ob ta in ing  b and k. In the, 

UBQ of this method It follovm from equat ions  (18) and ( 1 9 )  

t h a t  

= -2a - 1.386 
*l/2 

b -  

where T112 is the t i m e  r equ i r ed  f o r  the o s c i l l a t i o n  t o  

damp t o  one-half amplitude and P is the  measured period 

of t h e  o s c i l l a t i o n .  

This  process ,  where t h e  c o e f f i c i e n t s  of t he  t r a n s f e r  

func t ion  are computed from d i r e c t  measurements of  the f l i g h t  

records ,  has been used e x t e n s i v e l y  f o r  the case of rocke t  

and f r e e - f a l l  t e s t  models s ince  these t e s t  models, i n  

genera l ,  e x h i b i t  the low damping and high n e t u r a l  frequency 

which enable t h i s  approach. 

Once a and u are determined, values  o f  J 1  

and J2 appearing i n  equat ion  (18) mag be obtained from 

the time h i s t o r y .  I n  i n s t ances  where the ateady state is 

adequately def ined,  d i r e c t  computation of J2 i s  affosded,  

In the a n a l y s i s  of the response of an a i rp l ane  i n  angle of 

s t t a c k  and p i t c h i n g  v e l o c i t y  over sho r t  per iods of time, 

the c o e f f i c i e n t  J2 must be negat ive ly  equal  t o  the value 
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of  t h e  response a t  s teady  s t a t e .  For the response in normal 

acce le ra t ion ,  however, a s t e p  input of the c o n t r o l  sur face  

causes  an e f f e c t i v e  instantaneous change i n  load on the t a i l  

which, i n  tu rn ,  produces an  instantaneous jump i n  the 

normal-accelerat ion response of  the a i r c r a f t  e An i l l u s -  

t r a t l o n  o f  this type of response i s  shown i n  Figure 4. The 

r e l a t i o n s h i p  among the Instantaneous change i n  a c c e l e r a t i o n  

a t  t = 0, t he  s t eady- s t a t e  acce le ra t ion ,  and J2 is shown 

by equat ion (18) f o r  t = 0 so  t h a t  

With the  c o e f f i c i e n t  J2 thus  e s t a b l i s h e d ,  a poss i -  

b i l i t y  f o r  d i r e c t  c a l c u l a t i o n  o f  J1 may be ind ica t ed  f o r  

the case of a s t e p  inpu t  and l i g h t l y  damped systems by 

w r i t i n g  equat ion (18) i n  the form 

and 

where P is the per iod of the o s c i l l a t i o n  and tp i s  the  

time r equ i r ed  f o r  the o s c i l l a t i o n  t o  reach a peak a f t e r  

i n i t i a t i o n  of t h e  s t e p  Input .  The r e l a t i o n s h i p  among 

P, and tp may be v i sua l i zed  by  re ference  t o  F i e u r e  4. 
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The method of  ob ta in ing  the  t r a n s f e r  func t ion  f o r  8 

represented  by equat ion  (18) i n  response t o  a step sys t em 

input  of the f o r c i n g  f u n c t i o n  i s  shown i n  appendix C. The 

t r a n s f e r  func t ion  i s  of  the form 

where a ,  b ,  k, and 13 a r e  r e l a t e d  by equat ions (20 )  

and (21), and €3, i s  the  magnitude of the step. 

As a gene ra l  r u l e ,  the  exponential-approximation 

method o f  s imulat ing t r a n s i e n t  da t a  seems t o  o f f e r  t h e  b e s t  

approach of any of the methods r epor t ed  i n  t h i s  paper when 

the response i s  a l i g h t l y  damped o s c i l l a t i o n  t o  an approxi- 

mate s t e p .  It i s  of i n t e r e s t  t o  note t h a t  t h i s  method may 

be used even though the input  i s  not approximated by  expo- 

n e n t i a l  express ions ,  provided i t s  analgais i s  r e s t r i c t e d  t o  

the f r e e - o s c i l l a t i o n  poptfons of t h e  response.  The coeff ib- 

c i e n t s  k, b,  31) and J2 of' equat ions (18) and (19) may 

be obtained r e g a r d l e s s  of the form of input provided t h a t  

t hey  are obtained from a p o r t i o n  of t he  time-response curve 

a f t e r  the input  has  reached 8 s teady-s ta te  value.  T h l s  

auap ta t ion  i s  pointed o u t  by Shinbsot19 and the method of 

a p p l l o a t i o n  i s  repor ted  t h e r e i n .  

Shfnbsot, l oc .  c i t e  - -  
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The foregoing method i s  use fu l  only when the per iod 

and time t o  damp t o  one-half amplitude may be read  d i r e c t l y  

from the records. For h igh ly  damped systems where t h i s  i s  

not  poss ib le  and a s  an a l t e r n a t e  t o  the foregoing approach, 

a l ea s t - squa res  method f o r  ob ta in ing  the  per iod,  damping, 

and o t h e r  c o e f f i c i e n t s  of equat ion  (18) mag be employed. 

Greenberg*' d i scusses  ex tens ive ly  the a p p l i c a t i o n  of  the 

Prony method f o r  f i t t i n g  a sum of' exponent ia ls  t o  a number 

of equa l ly  spaced o rd ina te s .  This  method w i l l  l ikewise 

o b t a l n  the  t r a n s f e r  f u n c t i o n  given b y  equat ion ( 2 5 ) .  

A measure of how closely t he  a n a l y t i c a l  expression 

r ep resen t s  the  time response of t h e  system during f r e e  

o s c i l l a t i o n  may be  obtained by  s u b s t i t u t i n g  the der ived 

c o e f f i c i e n t s  i n t o  equat ion (18) and allowing the time t t o  

vary,  This s u b s t i t u t i o n  amounts t o  taking the inverse 

Laplace transform of the  t r a n s f e r  func t ion ,  once i t  has been 

determined, and r e t u r n i n g  t h e  function a ( w )  t o  the time 

domain where i t  should be equa l  t o  the o r i g i n a l  func t ion  of 

terne q ( t ) .  

The time required f o r  this method v a r i e s  w i t h  the  

number of' l e a s t - squa res  s o l u t i o n s  requi red  t o  obtain t he  

four unknowns b, k ,  J1, and 

the case  where a l eas t - squares  

2o Greenberg, l o c ,  c i t .  - -  

J2.  The extreme case i s  

s o l u t i o n  is d e s i r e d  f o r  a l l  
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the c o e f f i c i e n t s  of a responseo I n  t h i s  ins tance  i f  the 

input  is considered t o  be a step and t h e  response i s  

descr ibed by 24 d a t a  p o i n t s ,  t he  time requi red  t o  ob ta in  

the t r a n s f e r  func t ion  of the system may be est imated a t  

8 t o  10 man-hours of work and t h ree  sepa ra t e  least-squares 

s o l u t i o n s  are r equ i r ed ,  Any reduct ion  i n  t h e  number of 

leas t - squares  s o l u t i o n s  w f l l  obviously reduce the t i m e  

requi red  appreciably.  

Donegan-Pearson method. This method21 i s  appro- 

p r i a t e  for ob ta in ing  t h e  t r a n s f e r  func t fon  from t r a n s i e n t  

response t o  an a r b i t r a r y  input, and, when o n l y  manual 

computing technique 9 a r e  a v a i l a b l e  off  e r a  a good degree 

of accuracy w i t h  a mlnimum of worko I n  brief a t r a n s f e r  

func t ion  of  one of the forms given by equat ion ( 1 7 ) ,  f o r  

example 

is i n t e g r a t e d  twice and rearranged t o  give 

t 
g d t  f f kt JOT 9 dT d t  - 6 d t  - 

s,” s,’ 6 dT d t  = -9 A 

21 James Jm Donegan and Henry A .  Pearson9 Matrix 
Method of Determining the Longi tudinal-Stabfl i  t y  Coef f f c i e n t s  
and Frequency Response of an A i r c r a f t  From Tranaient  F l i g h t  
Data. NACA Rep. 1070, 1952, (Supersedes NACA TN 2370 , )  



The equat ion is now i n  a form where t h e  i n t e g r a l s  may be 

c a l c u l a t e d  from q and 6 which a re  known from a time 

h i s t o r y .  The i n t e g r a l  q u a n t i t i e s  i n  the  foregoing equat ion 

are evaluated a t  some f i x e d  time i n t e r v a l s ,  s t a r t i n g  with 

the  i n i t i a l  c o n t r o l  input ,  t o  f o r m  a s e r i e s  of simultaneous 

equat ions  f r o m  which the  

may be evaluated by  the leas t - squares  method. 

F 
I E and - c o e f f i c i e n t s  2 A' A' A 

The expression of the t r a n s f e r  func t ion  i n  i n t e g r a l  

f o r m  i s  an important po in t  wfth regard  t o  a p p l i c a t i o n  of t h i s  

technique i n  t h a t  the i n t e g r a t i o n  processes  a r e  inhe ren t ly  

more accura te  th sn  the d i f f e r e n t i a t i o n  process ind ica t ed  i n  

the  normal form of the  t r a n s f e r  func t ions ,  The 1nteg:rals 
22, 2 3  and the  Coef f i c i en t s  may be obtained by  matrix methods. 

The use  of higher-order terms i n  the numerator and denomi- 

na to r  of the, t r a n s f e r  func t ion  i s  poss ib le  bu t ,  i n  many 

case8, i s  unnecessary because of the in s ign i f i cance  o f  t h e i r  

c o e f f i c i e n t s  and i s  imprac t i ca l  because of  the la rge  amount 

of addft  i o n a l  work requi red  e 

In  t h e  d e r l v a t i o n  of t h i s  method no r e s t r i c t i o n  i s  

made o r  implied t h a t  the f o r c i n g  func t ion  ( i n p u t )  o r  

t r a n s i e n t  response reach a s teady  s t a t e  within the  tfme 

..- 
" Donegan and Pearson, - -  l o c ,  c i t .  

23  Frank l in  W e  Diederich,  Calcu la t ion  of the Aero- 
dynamic Loading of Swept and [Jnswept F l e x i b l e  Wings of  
Arb i t r a rg  S t i f f n e s s ,  NACA Rep, 1000, 1950. (Supersedes 
XACA T N  1876,) 
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l i m i t  considered.  There appears t o  be, however, a p r a c t i c a l  

l i m i t a t i o n  on the length  of the  record  aince,  f o r  any given 

shor t  l ength  of  a curve t  a l a rge  number of a n a l y t i c a l  

expressions m y  be w r i t t e n  t h a t  s a t i s f y ,  w i t h  good prec is ion ,  

the condi t ions  of  the curve i n  the r eg ion  considered.  

Obviously, a8 the length  of t h e  record  considered is 

extended, the expressions t h a t  adequately define the curve 

become more l imi t ed  u n t i l  the c o r r e c t  expression is  c l o s e l y  

approached. I n  the  a n a l y s i s  of a r b i t r a r y  inputs  and 

responses  t h a t  reached a s teady  s t a t e ,  t h i s  method produced 

e x c e l l e n t  r e su l t s  over a large, range of f requencies  i n  a 

reasonably s h o r t  l ength  of t i m e .  When p ro f i c l encg  waa 

obtained i n  the use of t h i s  method, inc luding  the matrix 

methods of i n t e g r a t i o n  and l e a s t  squares, a complete f r a -  

quency response r equ i r ed  about 8 man-hours of work from raw 

d a t a  (averaging about 20 d a t a  p o i n t s )  t o  finished frequency- 

response curves (averaging 16 f r equenc ie s )  * 

I n  the a p p l i c a t i o n  of t h i s  method, a somewhat simpler 

i n t e g r a t i n g  mat r ix  was used tha t  reduced the time of i n t e -  

g r a t i o n  b y  about one-half over the method presented by 

Donegan and Pearson '' The d e r i v a t i o n  of t h i s  i n t e g r a t i n g  

matr ix  by  use of  the r e l a t i o n s h i p s  repor ted  b y  Diederich 25 

is presented i n  appendix De 

Donegan and Bearson, - L I _  loc. c f t .  24 
25 Diederich, - -  l oc .  cite 



A check on the  accuracy w i t h  which the  time response 

i s  represented  i s  afforded by the  inverse  Laplace t r ans fo r -  

mation process .  26 

~ u g g e s t e d , ' ~  u t i l i z e s  the eva lua ted  i n t e g r a l s  of  the  ou tpu t ,  

the  recorded inpu t ,  and the t r a n s f e r  func t ion .  If the 

t r a n s f e r  func t ion  i s  t o  represent  the  system accura t e ly ,  

the  response obtained by t h i s  check must be equal  t o  the 

origfnab time response 

A second method, which has  been 

For both t h e  Donegan-Pearson and exponent ia l -  

approximation methods, a second approximation t o  the d e t e r -  

mined t r ans fe r - func t ion  c o e f f i c i e n t s  may be made by a pro- 

cedure suggested by Shinbrot e 

r e f i n l n g  procedure was attempted, the process was lengthy 

and f r e q u e n t l y  d id  no t  a f f o r d  b e t t e r  approximations because 

of f a i l u r e  o f  t h e  method t o  convergeo 

I n  cases  where t h i s  28 

26 Gardner and Barnes, l o c o  c i t e  

27 Donegan and Pearson, l o c ,  c i t e  

- _ I _  

- -  
28 Shinbro t ,  - -  l o c ,  c i t .  



CHAPTER /TI 

RESULTS AND COMPARISONS OF h4ETHOI)S 

The frequency responses  a s  obtained f r o m  t h r e e  a i r -  

c r a f t  o f  d i f f e r e n t  types are used h e r e i n  f o r  i l l u s t r a t i v e  

purposes. A rsummary of  the mass a d  geometric parameters 

of these a i r c r a f t  toge ther  w i t h  a ske tch  of t h e i r  p l an  fosms 

is presented i n  t a b l e  I, aa a r e  t h e  f l i g h t  conditions f o r  

which the d a t a  were obtained,  These a i r c r a f t  \ R i l l  be 

r e f e r r e d  t o  a s  a f i g h t e r ,  a t r a n s p o r t ,  and a f r e e - f a l l  

mode 1 e 

All methods of a n a l y s i s  were not appl ied  t o  a l l  t h r e e  

of these  a i r c r a f t ,  bu t  a comparison of the methods i s  made 

h e r e i n  f o r  t h e  f i g h t e r  a t  one f l i g h t  condi t ion .  The com- 

par i son  i s  made w i t h  the response i n  p i t ch ing  v e l o c i t y  t o  

an e l e v a t o r  s t e p  input .  T i m e  h i s t o r i e s  of the c o n t r o l  input 

and the response a r e  shown in Figure 5. The Donegan-Pearson, 

Prony, Four i e r  syn thes i ze r ,  13M, and manual Four ie r  methods 

were used t o  o b t a i n  t h e  frequency response o f  the f i g h t e r  

from these time h i s t o r i e s .  A t i m e  i n t e r v a l  of 0.10 second 

was used f o r  the manual methods, 0.05 second 8s used f o r  

the IBM method, and 0.06 second was used f o r  the  Four l e r  

s p t h e s i z e r .  The frequency-response curves thus  obtained 

a re  shown i n  Figure 6, toge ther  with the f a i r e d  curve of 

Figure 3 which was obtained a t  the  aame f l i g h t  condi t ions  

47 
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Figure 5 , -  Time history of elevator step input and pitching-velocity 
response of fighter at M = 0.6 and hp = 10,000 feet. Circled 
points indicate the response calculated from transfer coefficients 
obtained from Donegan-Pearson method. 
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Figure 6.- Frequency response of the fighter relating pitching velocity 
to elevator deflection at M = 0.6 and hp = 10,000 feet as determined 
by several methods. 



by the sinusoidal-response method. The frequency response 

of the  f i g h t e r  appears t o  be e s t a b l i s h e d  t o  a g e n e r a l l y  

acceptab le  degree by any one of' the s e v e r a l  methods shown. 

The expression "acceptable degree" is  expanded subsequently.  

E f f e c t  of Input Shape 

Inasmuch a@ the  compa t ib i l i t y  of' r e s u l t s  obtained by 

us ing  the var ious  methods on a s t e p  input  has  been es tab-  

l ished, i t  i s  of i n t e r e s t  to check the  e f f e c t  o f  t h i s  and 

o t h e r  input shape$. 

A check of the e f f e c t  of  input  shape on r e s u l t s  

obtained through use of  the Donegan-Pearson method has been 

made. The s t e p  i n p u t  i l l u s t r a t e d  i n  Figure 5 toge ther  w i t h  

the approximately square and t r i a n g u l a r  inputs  shown i n  

F igu res  7 and 8, r e spec t ive ly ,  were used f o r  the investi- 

g a t i o n  and these i npu t s  and the i r  responses were analyzed 

a t  t i m e  i n t e r v a l s  of 0.10 second, On each of these  three  

figures, the accuracy w i t h  which the responses were r ep re -  

sented by the  t r a n s f e r  func t ions  determined by  the Bonegan- 

Psarson method i s  shown by t h e  d a t a  p o i n t s  on the response 

curve.  These p o i n t s  represent  values  of' p i t c h i n g  v e l o c i t y  

obtained by mult ip ly ing  t h e  in t eg ra t ed  Tunc t i o n s  of  

equat ion (26a) by the der ived  t r a n s f e r  c o e f f i c i e n t s  a t  the  
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Figure 7.- Time history of elevator square-pdse input and pitching- 
velocity response of fighter at M = 0.6 and hp = 10,000 feet. 
Circled points indicate the response calculated from transfer 
coefficients obtained f r o m  Donegan-Peasson method. 
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Figure 8.- Time h is tory  of elevator tr iangular-pulse input and pitching- 
veloci ty  response of f igh ter  a t  M = 0.6 and hp = 10,000 f e e t .  
Circled points indicate  the response calculated from t ransfer  coeffi-  
c ients  obtained from Donegan-Pearson method. 
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values  of time indica ted  i n  Figure 5. This procedure has  

been descr ibed i n  more d e t a i l .  29 

The frequency response of t h e  f i g h t e r  as determined 

by these t r a n s f e r  func t ions  i8 shown i n  Figure 9 compared 

with the  f a i r e d  curves of  amplitude r a t i o  and phBse angle 

obtained from t h e  sinusoidal-response method. The 

ainuaoidal-response method i s  included because it involves 

a d i f f e r e n t  t e a t  technique. These fou r  s e t s  of frequency- 

response curves appear t o  be in good agreement. Whether 

t h e i r  agreement i s  t o  an “acceptab le  degree” mag be illus- 

t r a t e d  by examining how c l o s e l y  they agree i n  t h e  time 

domain when an i d e n t i c a l  c o n t r o l  input  i s  a p p l i e d  i n  each 

ca3e. This process  may be done manually through use of ths 

inverse  Laplace t ransformation;  however I the Four ie r  syn- 

t h e s i z e r  o f f e r s  a machine method o f  ob ta in ing  the t i m e  

response o f  a system descr ibed  b y  the frequency-response 

curves t o  an apppoximate ramp o r  s t e p ,  The Four ie r  syn- 

t h e s i z e r  was used i n  the p re sen t  a n a l y s l s  and t h e  inverse 

o f  the process descr ibed  i n  the section e n t i t l e d  “Descript ion 

and Discussion of  Methods” was appl ied .  

The c o n t r o l  input and time responses us ing  the th ree  

frequency-response curves corresponding t o  the t h r e e  input  

shapes inves t iga t ed  are shown i n  Figure 10, The curves show 

29 Bonegan and Pearson, l o c o  G. - 
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Figure 9.- Comparison of frequency-response curves of the fighter at 
M = 0.6 
by using the Donegan-Pearson and sinusoidal-oscillation methods. 

and hp = 10,000 feet as obtained f r o m  a variety of inputs 
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a maximum spread about 13 percent  of s teady-s ta te  value a t  

steady s t a t e  and a smaller percentage spread a t  peak over- 

shoot. Thus, i t  appears that the determinat ion of the 

t r a n s f e r  func t ion  i s  n o t  p a r t l c u l a r l y  sens i t ive  t o  the  

shape of the c o n t r o l  input when the Donegan-Pearson method 

is used, 

Effect of Harmonic Content of Input 

I n  the a p p l i c a t i o n  of Four ie r  methods, the  harnion1.c 

conten t  of t he  input must be considered and has a predomi- 

nant effect on the r e s u l t s  obtained. Harmonio content  per-  

t a i n s  t o  tho r e l a t i v e  magnitudes o f  the s i n e  waves of 

var ious  f requencies  which make up the  input o r  response 

shape and is s a s e n t i a l l y  the amplitude of the Four ie r  

transform of a func t ion ,  

I n  order  t o  i l l u s t r a t e  the harmonic conten t  of 

Eseveral inputs ,  Figure 11 shows the  Four ie r  transforms of 

square,  t r i a n g u l a r ,  s t e p ,  and impulse type of inpu t s  p l o t t e d  

a g a i n s t  frequency. It can be  seen t h a t  the harmonic conten t  

of” the square and t r i a n g u l a r  inputs go t o  z e r o  a t  equally 

spaced increments of frequency, the  spacing being dependent 

on the dura t lon  and shape of t he  i n p u t ,  For e i t h e r  shape, 

doubling the duration of the input w i l l  halve the spac ing  

between the f requencies  of zero harmonic c o n t e n t .  An e w o p  

frequently encountered in the frequency domain when Fourier  
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methods a r e  used i s  caused by the  harmonic conten t  of the 

Four i e r  transform of t h e  input  c l o s e l y  approaching o r  

reaching zero.  When t h i s  cond i t ion  occurs,  s l i g h t  e r r o r s  

i n  the d a t a  cause the  frequency-responae curves t o  diverge 

and even t o  go t o  i n f i n i t y  a t  some frequency if t h e  harmonic 

con ten t  of the input func t ions  becomes zero a t  t h a t  

f r equenc y . 
An example of  the d i s t o r t i o n  of the  frequency- 

response curves due t o  low harmonic content  was obtained 

i n  t h e  a n a l y s i s  by Four ie r  methods of the rectangular-pulse  

inpu t  and p i t ch ing -ve loc i ty  response of the f i g h t e r  a8 shown 

i n  Figure 12. Because of t h e  length of  the r ec t angu la r -  

pu lse  input  used, t h e  harmonic conten t  of both t h e  input and 

response c l o s e l y  approached zero a t  f requencies  of about 

8.5 r ad ians  per  second. The d i s c o n t i n u i t y  due t o  the l ack  

of harmonic con ten t  i s  shown i n  the  frequency-response p l o t  

of Figure 13. An a d d i t i o n a l  t e s t  u t f l i z i n g  an input  which 

a f f o r d s  d a t a  having good harmonic content  i n  the  reg ion  of 

u n c e r t a i n t y  would be d e s i r a b l e  i n  order  t o  i n s u r e  t h a t  no 

l e g i t i m a t e  secondary peak o r  o t h e r  s i g n i f i c a n t  cha rac t e r -  

i s t i c  e x i s t  i n  t h a t  range of f requencies ,  

When choosing inpu t s  t o  be used i n  obta in ing  f l i g h t  

d a t a  f o r  Four ie r  a n a l y s i s ,  i t  i s  d e s i r a b l e  t o  examine t h e i r  

harmonic amplitudes in l i g h t  of expected instrument accuracies 
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Figure 13.- Discrepancies i n  regions of l o w  harmonic content t ha t  appear 
when the frequency response of the f igh ter  i s  determined by the Fourier 
analysis.  



6 1  

i n  order t o  select an input o r  series of i npu t s  which w i l l  

a f f o r d  su f ' f i c i en t lg  accu ra t e  frequency-response d a t a  i n  the  

frequency range of i n t w e s t  

Since i t  i s  d e s i r a b l e  t o  maintain large values  of 

harmonic content  over the e n t i r e  frequency range, i npu t s  

approaching an impulse would appear most u sab le ,  I n  

p r a c t i c e ,  however, c o n t r o l  i npu t s  of t h i s  type having 

s u i t a b l e  amplitudes must be maintained over a s i g n i f i c a n t  

length  of t i m e  so t h a t  the airplane i s  d i s tu rbed  suff i -  

c i e n t l y  t o  in su re  accurate  measurement of the responser  

Thus, t h e  t ransform of the r e s u l t i n g  pulse w i l l  o f t e n  

c l o s e l y  approaoh o r  reach zero a t  8ome frequency i n  the 

range over which the  rersponss is desired. 

The t ransform of the step input  has  the  d e s i r a b l e  

f e a t u r e  of never becoming Zero. Having i n f i n i t e  amplitude 

a t  zero frequency, the transform decreases  as  the inverse  

f u n c t i o n  of f requency and approaches zero amplitude a s  the  

frequency approaches i n f i n i t y .  In  view of the r a p i d  decrease 

i n  harmonic content  with inc rease  i n  frequency, however, I t  

i s  sometimes d i f f i c u l t  t o  maintain the accuracy of  the 

frequency response t o  a s  high a value of frequency a s  

d e s i r e d .  T h i s  e f f e c t  may be seen i n  Figure 11 by comparing 

the hmmonic conten t  of the t r i a n g u l a r  and s t e p  p u l s e s  from 

1 t o  8 r ad ians  per second, 
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The transforms of s e v e r a l  bas i c  inputs  toge ther  w i t h  

the  e f fec t  on harmonic con ten t  of a i s t o r t i o n  of these b a s i c  

i n p u t s  a re  i l l u s t r a t e d  i n  a r e p o r t  by Convair. 30 

Effec t  of Record Length 

The advantage ind ica t ed  f o r  t he  so-cal led curve- 

f i t t i n g  methods w i t h  regard  t o  t h e i r  a b i l i t y  t o  make a 

log ioa l  i n t e r p o l a t i o n  over frequency reg ions  of low hamonic  

content  would a l s o  appear t o  be appl icable  t o  e x t r a p o l a t i o n  

i n  e i t h e r  t he  frequency o r  the time domain. For example, 

the f a o t  t h a t  the a n a l y t i c a l  form of the t r a n s f e r  func t ion  

is assumed i n  advance f o r  these c u r v e - f i t t i n g  methods would 

appear t o  a f fo rd  p o s s i b i l i t i e s  f o r  analyzing only  a p a r t  of 

an input and response t o  e s t a b l i s h  the c o e f f f c i e n t s  of the 

transfer func t ion  whereas the Four i e r  ana lys i s ,  by the 

na ture  of the l i m i t s  of the Fourier i n t e g r a l ,  r e q u i r e s  t h a t  

a s teady-s ta te  o r  a constant-amplitude o s c i l f a t  ion  be 

obtained. Thi 8 apparent advantage of the  curve-f i t t  ing 

methods I n  t h a t  the t r a n s i e n t  is not requi red  t o  reach 

steady s t a t e  has, i n  genera l ,  proven t o  have d e f i n i t e  

p r a c t i c a l  l i m i t a t i o n s .  I n  the a p p l i c a t i o n  of bo th  Fourier 

and o u r v s - f i t t i n g  methods, Jtt has been found t h a t  time 

transfeats t h a t  do not c l o s e l y  a t t a i n  s teady  s t a t e  do not 

produce a c c w a t a  frequsncg-response d a t a .  



Figure 12, which shows the time h i s t o r y  of a 

rectangular-pulse  elevator input  and the response i n  

p i t c h i n g  v e l o c i t y  of t he  f i g h t e r ,  mag be used t o  i l l u s t r a t e  

these practical l i m i t a t i o n s ,  The data  were analyeed in 

three s t ages .  The response was f i r a t  considered i n  the 

t i m e  i n t e r v a l  f ~ o m  0 t = 0.70 second t o  be the response 

of the f i g h t e r  t o  an approximate step where the pitclhing 

v e l o c i t y  appeared t o  reach a s teady  a t a t e  before the  e l eva to r  

W R $  again disturbed, Time increments of' 0.05 second were 

u88d t o  obtain the frequency response of t h i s  p o r t i o n  of' 

t he  t i m e  h i s t o r i e s  by t h e  Prony, Donegan-Pearson, a d  manual 

Fourier methods. ( I n  t h i s  a n a l y s i s ,  t he  Prony method 

r equ i r ed  16 man-hours: the Donegan-Pearson method requilrad 

9 man-hours,) I n  add i t ion ,  check p o i n t s  were obtained by 

the manual F o w l e r  method (by us ing  Simpson's th ree-poin t  

rule  of i n t e g r a t i o n )  with t i m e  i n t e r v a l s  of 0.10, 0.025, 

and O,OX25 second. The frequency-response r e s u l t s  of t h i s  

a n a l y s i s  are shown i n  Figure l4 ana, although a l l  t h e  

methods c lose ly  agree, t he  frequency response appears t o  be 

quite d i f f e r e n t  from t h a t  i nd ica t ed  i n  Figure 6 which was 

obtained fo r  the same a i rp l ane  a t  the same f l i g h t  oondi t iona,  

< 

The 8ource of t h i s  discrepancy was determined when 

the t i m e  h i s t o r i e s  shown i n  Figure 12 were again analyzed 

by us ing  the Donegm-Pearson method a t  Oo05-seoond i n t e r v a l s  

t o  a time of 1.40 seconds where the response s t i l l  had n o t  
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Figure 14.- Frequency response of the f igh te r  r e l a t ing  pitching velocity 
t o  elevator deflection a t  M = 0.6 and hp = 10,000 f e e t  as determined 
from first  one-third of rectangular-pulse-input time his tory.  



approached a s teady  s t a t e  too c l o s e l y  but  t he  length  of t h e  

record  used had been doubled and t h e  e f f e c t i v e  amplitude had 

been more than  doubled. A t h i r d  ana lya i s  was made b y  using 

the  Donegan-Pearson method a t  0,lO-second i n t e r v a l s  t o  

2,lO seconds a t  which time i t s  s t eady- s t a t e  value was 

c l o s e l y  a t t a i n e d .  The frequency response obtained by using 

each o f  the three record lengths is shown i n  Figure 15 

toge ther  with the frequency response obtained for the 

f ighter ( b y  t h e  Donegan-Pearson method) from Figure 6. It 

nay be seen t h a t ,  when the f i r s t  one-third of i t s  response 

was analyzed, the record was s h o r t ,  and a s teady s t a t e  had ,  

not been reached; these  f a c t o r s  precluded an adequately 

p rec i se  d e f i n i t i o n  of t he  time response and an erroneous 

frequency response was obtained,  When the  length  of the 

record  was doubled, a more c o r r e c t  t r end  became apparent 

b u t ,  because a s teady s t a t e  had still not been def ined ,  

some f a i r l y  l a rge  d iscrepancies  p e r s i s t e d ,  p a r t i c u l a r l y  with 

regard  t o  the s t a t i c  value of the  frequency response ( t h e  

frequency-response curves of  Figure 6 be ing  used II b a s i s  f o r  

comparison) e #hen the analysis included t h e  e n t i r e  response, 

even though the  time i n t e r v a l  used i n  the ana lys i s  w a s  

doubled, a c l o s e  agreement w i t h  the frequency response 
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Figure 15.- Frequency response of the fighter relating pitching velocity 
to elevator deflection at M = 0.6 and hp = 10,000 feet as determined 
f r o m  portions of rectangular-pulse- and step-input time histories by 
using the Donegan-Pearson method. 



obtained from the s t e p  input  was obtained.  Donegan and 

P e a r s 0 n 3 ~  recommend t h a t  enough of the response time h i s -  

t o r y  should be t aken  t o  cover the n a t u r a l  period of the 

sys tern. 

Other Causes and E f f e c t s  of' E r ro r s  

I n  the determinat ion of  t r a n s f e r  func t ions  from 

inpu t s  and ou tpu t s  having reg ions  of low harmonic con ten t9  

an advantage has  been ind ica t ed  t o  the  approach of f i t t i n g  

an analyt icei l  expression t o  experimental  d a t a .  I n  the 

a u t h o r ' s  opinion,  t h i s  c u r v e - f i t t i n g  technique, a s  compared 

t o  the  Four ie r  a n a l y s i s ,  is of p a r t i c u l a r  mer i t  i f  t he re  i s  

reasonable confidence t h a t  the assumed a n a l y t i c a l  express ion  

i s  of  the c o r r e c t  form f o r  the system being analyzed. I n  

t h i s  manner, another  c o n d i t i o n  (the form of the t r a n s f e r  

f u n c t i o n )  is s t i p u l a t e d  which the ana lys i s  must obey. I n  

mathematical processes ,  the mom cond i t ions  c o r r e c t l y  s t i p u -  

l a t e d ,  the  more precise the r e s u l t s .  On the o the r  hard,  

e r r o r s  i n  the t r a n s f e r  func t ion  o r  frequency response aa 

obtained from the c u r v e - f i t t i n g  methods due t o  e i ther  the 

wrong assumption of the form of the t r a n s f e r  func t ion  o r  due 

t o  the 8 r r o r s  i n  t h e  c a l o u l a t i o n s  a r e  no t  r e a d i l y  apparent  

s ince  the assumption of a given form w i l l  usually give 

31 Donegan and Pearson, l o c o  cit. - -  
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v a r i a t i o n s  t h a t  appeap logical, However9 a s  has been 

pointed o u t ,  c e r t a i n  checks, such a s  t h e  use of  the inverse  

Laplace t r a n s f o r m t i o n ,  a r e  ava i l ab le  f o r  comparing the time 

response p r e d i c t e a  from the t r a n s f e r  func t ions  w i t h  the 

t im- response  curves from which the t r a n s f e r  f u n c t i o n s  were 

der ived  a 

In  the Fourier methods, inaccurac ies  are, i n  general ,  

more r e a d i l y  d i sce rn ib l e  than  i n  c u r v e - f i t t i n g  methods. In  

the use o f  Four i e r  methods, there  has  been found32 evidence 

of d i screpancies  a t t r i b u t a b l e  t o  t h r e e  causes:  the lack of 

harmonic con ten t  of the Fourier integral, the u8e of too 

l a rge  time i n t e r v a l s  S-n the tim domain t o  a f f o r d  accuracy 

i n  the  frequency domain, and the i n c o r r e c t  synchronizat ion 

of input  and response d a t a  i n  t h e  t i m e  domain, 

The f i r s t  of' thgse errors has a l r eady  been discussed 

i n  the cons ide ra t ion  of t he  e f f e c t  of input on Four ie r  

methods and, a s  has been pointed out, i s  usua l ly  dfscern ib le  

by divergence of the  curves in some small  range of  

f requencies ,  

The second of these errors, t ha t  of too l a r g e  tim 

i n t e r v a l s ,  is generally ind ica ted  b y  a s c a t t e r i n g  of the 

da ta  p o i n t s  i n  the frequency domain where the mag.nitude o f  

s c a t t e r  u s u a l l y  diverges r a p i d l y  with increas ing  fmquency,  
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Ins igh t  i n t o  the cause of t h i s  s c a t t e r  may be seen i n  the 

c h a r a c t e r i s t i c s  of the Four ie r  transform where, a t  each f re-  

quency, the t r a n s i e n t  q ( t )  is mul t ip l i ed  by  a s i n e  and 

cosine wave o f  u n i t  amplitude, a& where the r e s u l t i n g  a rea  

under the t w o  product curves  determine the c o e f f i c i e n t s  of 

the r e a l  and imaglnary p a r t s  o f  the complex va r i ab le  i n  the 

frequency domain. As f requencies  greater than  the  n a t u r a l  

frequency 8r8 inves t iga t ed ,  the d i f f e r e n c e s  i n  t h e  poa i t fve  

and negat ive a r e a s  of the product curves  grow smaller  

(compared w i t h  the magnitude o f  the ind iv idua l  a r e a s )  so 

t h a t  the effect of small e r r o r s  is magnified. Thus, sml l  

inaccurac ies  i n  the r e p r e s e n t a t i o n  of the t r a n s i e n t  curve 

become more prominent as higher f requencies  a re  inves t iga t ed  

and appear i n  the frequency domain as s c a t t e r .  Several 

es t ima tes  of the frequency a t  which s c a t t e r  w i l l  become 

Important, f o r  the d i f f e r e n t  Fourier methods, based on the 

tiae i n t e r v a l  chosen, have been Given i n  the section 

e n t i t l e d  "Descr ipt ion and Discussion of Methods," 

A t y p i c a l  occurrence of' s c a t t e r  due t o  the choice of 

too large a time i n t e r v a l  was obtained when the response of 

a f r e e - f a l l  model, the c h a r a c t e r i s t i c s  of which m e  given 

I n  t a b l e  I ,  was analyzed a t  0.10-second i n t e r v a l s  by the 

manual Four ie r  (numer2cal- inte@;rat ion)  method. The e l e v a t o r  

input used and the response of the model in angle of a t t a c k  

are  shorn in Figure 16, The frequency msponse a s  determined 





b y  t h e  numerical manual Four i e r ,  the  Coradi harmonic 

analyzer ,  and t h e  exponential-approxima t i o n  methods of" 

a n a l y s i s  a re  shown i n  Figure 17. The s c a t t e r  of p o i n t s  

obtained by  t h e  nianual Four i e r  method of numerical i n t e -  

g r a t i o n  occurs  a t  f requencies  g r e a t e r  than  about 8 r ad ians  

per second, Fur ther  a n a l y s i s  with smaller  time i n t e r v a l s  

o f ,  say, 0,05 second should provide b e t t e r  r e s u l t s  f n  t h i s  

r eg ion ,  

I n  the study of  m i s s i l e s  and f r e e - f a l l  models where 

low damping i s  gene ra l ly  encountered, t h e  use of t h e  

exponent fal-approximat Ion method i s  p a r t i c u l a r l y  u s e f u l  and 

r e q u i r e s  a minimum of  time. 

analyzed by both the l ea s t - squa res  (Prony) method with 0,lO- 

second i n t e r v a l s  and b y  d i r e c t  computation. Both Gave 

i d e n t i c a l  c o e f f i c i e n t s  and the frequency response obtained 

by  using these  c o e f f i c i e n t s  is a l s o  shown i n  Figure 17, 

The Donegan-Pearson method was attempted with t h i s  type o f  

response but  d i d  not produce c o e f f i c i e n t s  t h a t  represented  

t h i s  l i g h t l y  damped system as exactly a s  it did f o p  systems 

with high damping. The r ep resen ta t ion  of the time response 

bg the derived t r a n s f e r  func t ion  i s  i l l u s t r a t e d  i n  Fif;ure 16 

whese t he  fnvsrse  Laplace transform was appl ied t o  the 

t r a n s f e r  f u n c t i o n  obtained by the Donegan-Pearson and 

exponent fal-approximation methods t o  predict the  response 

t o  a step. The r eason  f o r  t h i s  condl t fon  i s  t h a t  the 

The response i n  Figure 16 was 
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Figure 17.- Frequency response r e l a t ing  angle of a t tack t o  elevator 
def lect ion of  a f r ee - f a l l  model. a t  M = 0.723 and hp = 32,000 feet  
as determined by several  methods. 
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t r a n s f e r  c o e f f i c i e n t s  which p r imar i ly  determine t h e  per iod  

and damping of t h e  o s c i l l a t i o n  a re  determined by the  double 

i n t e g r a t i o n  and In t eg ra t ion ,  r e spec t ive ly ,  of the output  e 

The smoothing e f f e c t  of these i n t e g r a t i o n  processes  on any 

e x i s t i n g  o s c i l l a t i o n  does not  t he re fo re  enable  accurate  

d e t e c t i o n  of the o s c i l l a t i o n  c h a r a c t e r i s t i c s .  

Although s c a t t e r  obtained by us ing  the Four ie r  

approach i s  i n d i c a t i v e  of inaccurac ies ,  the converae does 

not  apply inasmuch a s  the absence of s c a t t e r  i n  the us8  of 

Four i e r  methods is not an i n d i c a t i o n  of cor reo tness .  An 

i l l u s t r a t i o n  o f  t h i s  po in t  was obtained i n  the a n a l y s i s  of 

the frequency response! of t h e  t r a n s p o r t ,  t e s t e d  under the 

condi t fons given i n  t a b l e  I, The response i n  p i tch ing  

v e l o c i t y  t o  an e l e v a t o r  input  1s shown i n  Figure 18. 

manual (numer ica l - in tegra t ion)  Four ie r  method, analyzed a t  

Oe20-second i n t e r v a l s ,  was used t o  det8rdMS i n i t i a l l y  the 

response a t  1, 3 ,  4, 5, and 8 r a d i a n s  per second and these  

frequency-response po in t s  a r e  ind ica t ed  i n  Figure 19 e 

Although the  amplitude r a t i o s  and phase angles  a t  the fre- 

quencies inves t iga t ed  d i d  not i nd ica t e  s c a t t e r ,  when two 

a d d i t i o n a l  frequencies (6 .5 and 7.5 r ad ians  per  second) were 

inves t iga t ed ,  th6 m a t t e r  becam apparent.  A t  a smaller 

time i n t e r v a l  of 0.10 8eCOnd, the c o n t r o l  input and time 

response were analyzed by us ing  the F o w l e r  synthes izer ,  

Donegan-Pearson, and again the manual (numer ica l - in tegra t ion)  

The 
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Figure 19.- Frequency response of -the transport  a t  M = 0.268 and 
hp = 5,000 f e e t  as determined by several  methods. 
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Four i e r  methods. Although small d i f f e r e n c e s  i n  the r e s u l t s  

a r e  apparent i n  Figure 19, they  do agree s u f f i c i e n t l y  w e l l  

f o r  most purposes,  

per second and w i t h  a 0.05-second time i n t s r v a l  was made 

with the numerical- integratfon Four i e r  method The r e s u l t  

e s s e n t i a l l y  subs t an t i a t ed  the value determined with 0.10- 

second time intervals 

A check point  a t  a frequency of 8 rad ians  

The t h i r d  mentioned cause of  e m o r  o f t e n  incur red  i n  

the Four ie r  a n a l y s i s  was r e f e r r e d  t o  as i n c o r r e c t  synchro- 

n i z a t i o n  of the input  and response d a t a  i n  the  time domain, 

A s h i f t  i n  the c o r r e l a t i o n  of  t h e  time s c a l e s  between input 

and output ,  i n  t u r n ,  causes  a change i n  the phase angles  

obtained i n  the frequency domain by  an amount d i r e c t l y  pro- 

p o r t i o n a l  t o  the frequency, These erroneous values  of l a g  

o r  lead w i l l  be hard t o  d e t e c t  r ega rd le s s  of whether Four ie r  

o r  c u r v e - f i t t i n g  methods a r e  used s ince  inco r rec t  b u t  appar- 

e n t l y  l o g i c a l  frequency-response curves w i l l  u s u a l l y  occur 

I n  order t o  avoid  or  reduce e r ro r s  i n  the  deteromfna- 

t i o n  of t r a n s f e r  func t ions  from f l i g h t  da t a ,  i t  i s  h ighly  

d e s i r a b l e  t o  use a s  l a r g e  a control d e f l e c t i o n  a s  poss ib l e ,  

but t h e  magnitude of th i s  c o n t r o l  d e f l e c t i o n  must a l s o  be 

compatible w i t h  t h e  requirement t h a t  the s t a b i l i t y  param- 

e t e r s  of the  a i rp l ane  remain wi th in  their linear range,  It 

a l s o  appears h i g h l y  d e s i r a b l e  t o  analyze responses f rom t w o  

or more input shapes a t  a g:fven f l i g h t  condition., A 
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comparison of t he  frequency response obtained from the  same 

record  by d i f f e r e n t  methods has a l s o  proved a u s e f u l  check, 

A 8  mentioned previously,  example 3 i nd ica t ing  the  

t imes requi red  t o  reduce flight data  t o  frequency responses 

by  the various methods discussed h e r e i n  a r e  summarized i n  

t a b l e  11. The t a b l e  enables  the weighing of' the tine 

f a c t o r  i n  choice o f  a method; however, the choice depends 

on o t h e r  f a c t o r s  a s  well, such a s  a v a i l a b i l i t y  o f  machi:% 

computing equipment and l i m i t a t i o n s  inherent  i n  the var ious 

methods a s  have been d i scussed ,  



CHAPTER V 

COWCLUDING REMARKS 

I n  the foregoing  s tudy  a number of cons idera t ions  a re  

ind ica ted  which p e r t a i n  t o  the choice of methods i n  the 

determinat ion of t r a n s f e r  func t ions  and frequency response 

from t r a n s i e n t  d a t a ,  These cons ide ra t ions  mag be summarized 

fol lows:  

I n  the methods which involve the ana lys i s  o f  t r a n s i e n t  

responses over s h o r t  pe r iods  of t i m ,  a c o n t r o l  input  should 

be used t h a t  w i l l  afford ( a )  a close approach t o  a steady- 

Stat€? condi t ion  and ( b )  response amplitudes and harmonic 

conten t  (covering the frequency range of i n t e r e s t }  l a r g e  

enough t o  give good instrument and reading accuracy y e t  

small  enough t o  keep the a i r c r a f t  from depa r t ing  from the 

f l i gh t  condition f o r  which the response da t a  a r e  des i r ed ,  

When f l i g h t  d a t a  a m  analyzed, i t  appears highly d e s i r a b l e ,  

a s  a check on the determined t r a n s f e r  func t ion ,  t o  obtafn  

responses from two o r  more input  shapes a t  a given f l i g h t  

condi t ion .  A comparison of the frequency response obtained 

from t he  8ame recora by d i f f e ren t  methods has also proved a 

usefu l  check. 

The method invoZvPng t h e  o s c i l l a t i o n  of  an a i m r a f t  

through use of s inuso ida l  c o n t r o l  i npu t s  r e q u i r e s  a large 

amount of f l i g h t  time b u t  a P e l a t i v e l y  simple a n a l y s i s .  
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S a t i s f a c t o r y  da t a  may be obtained with a human p i l o t  gener- 

a t i n g  an approximate s inuso ida l  c o n t r o l  input .  For modes of 

a i r c r a f t  motion which a re  nea r ly  c r i t i c n l l r  damped, the 

l a r g e  amount of f l i g h t  t i n e  can be reduced somewhat s ince  

continuous records  may be taken while the frequency of' 

o s c i l l a t i o n  i s  slowly changed t o  cover the frequency range 

des  i r e d .  

Two manual Four ie r  methods of' analyzing a r b i t r a r y  

inpu t s  and t h e i r  responses were i n v e s t i g a t e d ,  I n  the f i r s t  

approach, ana ly t  icah express ions  wi th in  d i s c r e t e  i n t e r v a l s  

a r e  f i t t e d  t o  the  time response and inpu t ,  and terms of t he  

Four i e r  i n t e g r a l  a r e  obta ined  a n a l y t i c a l l y ,  In t h e  second 

approach, the  time response and input  func t ions  a t  s e l e c t e d  

times a r e  f i r s t  mul t ip l i ed  b y  the s i n e  and cosine func t ions  

appearing i n  t h e  Four ie r  i n t e g r a l  and t h e  r e s u l t i n g  product 

curves  a r e  i n t e g r a t e d  numerically.  The f i rs t  approach 

appears t o  be b a s i c a l l y  more accurate  when u t i l i z i n g  manual 

computing bu t  i s  not as f l e x i b l e  o r  a s  s u i t e d  t o  machine 

c a l c u l a t i o n s  a s  t he  second approach. Speceal machines f o p  

accomplishing a Four ie r  a n a l y s i s ,  such a s  the  Four i e r  syn- 

t h e s i z e r  and Coradi harmonic ana lyzer ,  a f fo rd  a means f o r  

s i g n i f i c a n t l y  reducing c a l c u l a t i o n  time as  compared t o  a 

manual approach, The two machines mentioned g i v e  r e s u l t s  

comparable t o  those obta ined  by the usua l  manual procedure 

i n  numerical Four ie r  ana lyses ,  Because of I ts  p r i n c i p l e  of 



opera t ion ,  the Coradi harmonic analyzer  appears t o  be 

b a s i c a l l y  more accura te  than the Four ie r  synthes izer  and, 

i n  general, gave s a t i s f a c t o r y  r e s u l t s  out t o  somewhat h igher  

f requencies .  The Coradi harmonic analyzer appears more 

capable of handl ing random v a r i a t i o n s  than the Fourier 

synthes izer  e The mechanioal a p p l i c a t i o n  of  the numerical 

Foupier a n a l y s i s  through use of punch-card c a l c u l a t i n g  

machines ( f o r  example, I 3 M  equipment) is a means f o r  appre- 

c i a b l y  reducing c a l c u l a t i o n  time. T h i s  approach appears t o  

afford the p o s s i b i l i t y  of ob ta in ing  g r e a t e r  p r e c i s i o n  i n  

the c a h a l a t l o n s  s ince  the r ap id  computation makes f e a s i b l e  

the use of smal le r  time i n t e r v a l s  oombined w i t h  more compli- 

c a t e d  and p r e c i s e  i n t e g r a t i n g  formulas e 

The exponential-approximation and Donegan-Pearson 

methods e s t a b l i s h  an a n a l y t i c a l  expression f o r  the t r a n s f e r  

func t ion  which, i n  terms of the imaginary frequency var iab le ,  

is continuous i n  frequency. The Four i e r  a n a l y s i s ,  i n  con- 

trast, does not f u r n i s h  a n a l y t i c a l  expressions and g i v e s  

values of frequency response only  a t  s e l e c t e d  f requencies  e 

The Donagan-Bearson and Prony methods o m  be used satis- 

f a c t o r i l y  when reasonable  confidence e x i s t s  as  t o  the 

analytical forms of the t r a n s f e r  func t ion  ( s i n c e  the form 

must be assumed in advance) This  approach w i l l  not, 

however, d e t e c t  d e t a i l s  of  the frequency responae that  

cannot be approxfmated by the astsumed form even if such 
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c h a r a c t e r i s t i c s  e x i s t  i n  the time response I n  c o n t r a s t ,  

Four ie r  a n a l y s i s  w i l l  d e t e c t  a l l  d e t a i l s  of the  frequency 

response which a r e  w i t h i n  t h e  accuracy o f  the measurements 

and the c a l c u l a t i o n  procedure a The exponential-approximation 

method i s  b e s t  s u i t e d  f o r  l i g h t l y  damped systems where the 

c o n t r o l  input c l o s e l y  approximates a s t e p  o r  i s  of a f o r m  

t h a t  possesses  a simple Laplace transform. The long i tud ina l  

t r a n s f e r  func t ions  o f  o s c i l l a t o r y  a i r c r a f t  can o f t e n  be 

determined b y  simple, d i r e c t  computatfon from the measured 

per iod ,  damping, s teady-s ta te  value o f  the response,  and 

phasing o f  t h e  t i m a ,  response.  Nonosci l la tory t r a n s i e n t s  

t h a t  do not afford d i r e c t  approximation of the response may 

be approximated by a l ea s t - squa res  procedure known a s  the 

Prony method. The Donegan-Pearson method appears b e s t  

s u i t e d  t o  systems t h a t  a re  no t  h ighly  o s c i l l a t o r y  and works 

w e l l  for i npu t s  t h a t  ape not necessarily represented  by  

a n a l y t i c a l  expressions.  ?Then leas t - squares  procedures must 

be appl ied i n  the  Prony method, t h e  Donegan-Pesrson method 

gene ra l ly  a f fo rds  s h o r t e r  c a l c u l a t i o n  time. When more than 

a few d i s c r e t e  f requencies  a re  d e s i r e d ,  the Donegzn-Pearson 

method affords a more r ap id  approach than manual Fourier 

a n a l y s i s  

Four ie r  methods are  more c r i t i c a l  t o  the forms o f  the 

input  than the Donegan-Pearson method and inputs  should be 

chosen t o  avofa reg ions  of  l o w  hasmonic content i n  the 
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frequency range o f  i n t e r e s t  Although the Donsgan-Pearson 

method appears  t o  i n t e r p o l a t e  s a t i s f a o t o r i l y  over regions 

of low harmonic conten t ,  i t  does not appear t o  be appl icable  

t o  large e x t r a p o l a t i o n  i n  e i t h e r  the frequency o r  time 

doxafn, In the use of  t h i s  method, a s  in the Four ie r  

methods, i t  i s  necessary to ob ta in  data  which c l o s e l y  

approach the  steady s t a t e  in orde r  t o  p r e d i c t  accurately 

the l o  w-f re que nc g-re spo nse c h EW ac te P f s t i c  s . 





APPENIIX A 

ESTIMATTOEJ OF THE ERRORS ENCOUNTERED U S I N G  A 

CONTROL INPUT THAT CHANGES IM FREQUENCY 

AT A COPTSTANT RATE 

Buch of the ex tens ive  f l i g h t - t e s t  t h e  involved i n  

ob ta in ing  frequency-response da t a  b y  us ing  a s inuso ida l  

input  can be  e l imina ted  i f  the s inuso ida l  input is con- 

tinuoutsly changed i n  frequency a t  a slow r a t e ,  Since 

t r a n s i e n t s  a r e  c o n s t a n t l y  being introduced and dying o u t  

because of t h i s  c o n s t a n t l y  changfng frequency, the  e r r o r  

introduced by  assuming t h a t  the response t o  t h i s  wave 

approximates the  s t eady- s t a t e  response t o  a cons tan t -  
- 

frequency wave may, a t  any g iven  frequency, be a func t ion  

of the  n a t u r a l  frequency and damping of the a i r p l a n e  a s  wel l  

a s  the r a t e  a t  which the  frequency fs changed. Inves t iga-  

t i o n  of the  magnitudes o f  t h e s e  errors i n  m p l i t u d e  and 

phase angle based on the response of the a i rp l ane  to a 

c o ns t a n t  - f r e  que nc y s lnu s o i d  a 1 1 npu t wa s per f o r  me d 8 s 

fol lows:  

If a wave form of  cons tan t  amplitude and c o n s t a n t l y  

changing fmquency i s  compared with a s inuso ida l  wave form 

having the  same amplitude b u t  cons tan t  frequency, there  will 

occur,  a t  et. t i m e  he re in  assumed t o  be zero, a condi t ion  

where the amplitude and instantaneous frequency of t he  two 
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waves w i l l  be i d e n t i c a l .  I n  the following der iva t ion ,  the 

frequency a t  t h i s  in s t an t  i s  defined a8 

waves are ad jus t ed  so t h a t  a t  t h i s  i n s t a n t  both wave8 a r e  

a t  t h e i r  maximum amplitude. A second-order system fs con- 

s i d e r e d ,  The d i f f e r e n t i a l  equat ion r e l a t i n g  the response 

of the system t o  a constant  frequency input is then  

w o  and t h e  two 

Similarly, f o r  the varying cosine wave, t h i s  d i f f e r e n t i a l  

equat ion i s  

- + - D + 1 x =  COS(^, + C t ) t  
t 2  25 wn ) 

Comparison of t he  two inputs  show t h a t  t h e i r  differ- 

ence i s  e f f e c t i v e l y  a phaae difference which v a r i e s  as  the 

parabola jd = Ct'. Since a time-response s o l u t i o n  of 

equat ion  ( A 2 )  was too cumbersome t o  be f e a s i b l e ,  a linear- 

ghase r e l a t i o n s h i p  was chosen that would approximate the 

parabolic-phase r e l a t i o n s h € p  and would af ford  a relatively 

s imple  time-response so lu t ion .  A wave having a l inear-phase 

differenw with a constant-frequency wave is ,  of course,  

another constant-frequency wave o f  a d i f f e r e n t  frequency. 

Although a eonstant-frequency wave would not appear t o  be a 
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good approxdmation t o  t he  varfable-frequency wave under 

cons ide ra t ion ,  i t  will be shown t h a t  the d i f fe rence  between 

the o r i g i n a l  constant-frequency wave and the varying- 

frequency wave may be c l o s e l y  approximated by the d i f f e r8nc8  

between the  two constant-frequency waves within t h e  region 

of i n t e r e s t  provided t h e i r  f requencies  a r e  proper ly  se lec ted .  

The procedure useti for e s t a b l i s h i n g  t h e  frequency of 

the wave used i n  the approximation, i n  terms of  t h e  r a t e  o f  

change o f  frequency of the variable-frequency wave, i s  a s  

follows: The actual phase-angle v a r i a t i o n  and the assumed 

approximation a re  i l l u s t r a t e d  i n  Figure 20. The tine 

i n t e r v a l  over which the  a c t u a l  phase-angle v a r i a t i o n  was 

approxima ted  was the i n t e r v a l  which would enable t r a n s i e n t s  

introduced by  the varying-frequency wave t o  reduce t o  one- 

twent ie th  of  t h e i r  i n i t i a l  value ( - T ~ / z o =  t =< 0) e The 

parabola was approximated by  a s t r a i g h t  l i n e  chosen t o  pass 
2 through the parabola a t  the t imes t = 0 and t = -- 

The approximation was chosen to  balance the  apeas between 

the parabola and the strPsfght l i n e  i n  the reg ion  of i n t e r e s t ,  

e 

3 

S u b s t i t u t i o n  of t h e  approximate phase angle i n t o  the  

vapying-frequency input  f o r  the r ight-hand s ide  o f  

equation (A2)  gives  

C O B  wo - - 2 C*l/20)t 
( 3  
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d t 2  
The r a l a t i o n s h i p s  = & and IDW = “(Mot + C t 2 )  2 C  

may be s u b s t i t u t e d  In to  equat ion  f A 3 )  t o  glve 

c o s t o  - k)t 
For an example caae where I)u = 1 rad ian  per  second 

per second and 

constant-frequency wave (eq. (Al) 1 and the  varying-frequency 

wave (eq,  ( A 2 ) )  a re  shown i n  Figure 2 1  together  w i t h  the  

oo = 8 r a d i a n s  per second, t h e  o r i g i n a l  

wave used t o  approximate the phase-angle r e l a t i o n s h i p  

between the o r i g i n a l  two ( e q .  ( & ) ) .  I n  add i t ion ,  the d i f -  

ference between the o r i g i n a l  constant-frequency wave and the 

varying-frequency wave is compared i n  Figure 2 1  with the 

d i f fe rence  between the  o r i g i n a l  conatant-frequency wave and 

the wave used i n  the approximation of the phase-angle 

r e l a t i o n s h i p  e 

The errors i n  phase and amplitude incur red  i n  the 

response of the second-order system and caused by t h e  use of 

a varying-frequencg-wave input i n s t ead  of a constant - 
frequency-wave inpu t  may be obtained by determining the 

d i f f e rence  between the phase angles  and amplitude r a t i o s  

obtained from these  two inpu t s .  These errors a r e  Given by 
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The substitution of D = j w o  for the response to cos uot 

and the substitution of D = j(uo - K) f o r  the respo~srs  

t o  oos(,, - R--t will, at t = 0 ,  g ive  the error r e l a t i o n -  

ship in terms of amplitude and phase angle 

Dt4 

1 

-tan-l 

@O 
2f w, 

1 - (zr f t an-1  3 

Various values of damping r a t i o  

w o / w n ,  and the r a t e  of change of frequency r a t i o  

5 ,  f requency 

r a t i o  

Dw/Un2 were s u b s t i t u t e d  into the foregoing r e l a t i o n s  i n  



order  t o  o b t a i n  p l o t s  of phase e r r o r  and amplitude e r r o r  

( r e l a t e d  t o  the  response t o  a pure s i n u s o i d a l  i n p u t )  a t  zero 

time. Figure 22 p resen t s  p l o t s  of t hese  e r r o r s  over 8 range 

of values  of parameters p e r t i n e n t  t o  most a i r c r a f t .  This 

figure i n d i c a t e s  t h a t  t he  e r r o r s  increase  r a p i d l y  with a 

decrease i n  the  value o f  damping r a t i o  below O,’i’Ct7. A t  low 

values  o f  damping r a t i o ,  excess ive ly  l a rge  e r r o r s  w i l l  be 

obtained un le s s  the frequency i s  var ied  a t  an extremely low 

DO 
w 2  

r a t s  i n  t h e  v i c i n i t y  of - = 0.01.. The g r e a t e s t  e r r o r s  i n  
n 

a l l  ca ses  appear t o  occur i n  the v i c i n i t y  of t h e  n a t u r a l  

frequency, t h e  e r r o r s  approaching zero a t  high and low values 

of the  frequency r a t i o .  

For the  t e s t s  presented i n  the  body of t h i s  paper, 

the a i rp l ane  t e s t e d  had a damping r a t i o  of about O,?. The 

r a t e  of  change of frequency f o r  these t e s t s  was not cons tan t  

but r a t h e r  was he ld  constant  a t  one frequzncy f o r  s eve ra l  

o s c i l l a t i o n s  before  progressing to  a new frequency. However, 

averaging over a range o f  f requencies  gave an average value 

of Dwlw$  of 0,06 .  Figure 22 i n d i c a t e s  an e r r o r  i n  

amplitude and i n  phase angle of  l ess  t h a n  10 percent for t he  

a i r p l a n e  t e s t e d  a t  t hese  condi t ions .  T h i s  e r r o r  f a l l s  

wi th in  the s c a t t e r  shown i n  Figure 3. 
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APPERTDIX €3 

METHODS OF FOURXER ANALYSIS WHEREIN THE TRANSIENTS 

ARE REPRESZWED BY A SERIES OF POLYNOMIALS 

A r e p r e s e n t a t i o n  of an  approximate step-control i n p u t  

and the time response of p i t ch ing  v e l o c i t y  of the f i g h t e r  a s  

shown i n  Figure 5 involved t h e  d i v i s i o n  of the  input In to  

three i n t e r v a l s  of t i m e  and t h e  d i v i s i o n  of the response 

i n t o  f i v e  i n t e r v a l s  o f  time. 

The input ,  which reaches a s teady-s ta te  value of 

0.74’ a t  

v a l s  by the equat ions 

t = 0.10 second, was represented  wl th in  the  i n t e r -  

< <  
G O ( t )  = 20t2 (0 = t = 0 , 0 5 )  

< <  
(0 .10 = t = o b )  

The Four ie r  transform of the input i s  then 

93  
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o r  i n  t r igonometr ic  form 

k? s i n  0.050 + 
3 cos 0.1016 - - lL8 cos 0 .05w - 13.0 

w 2 W 2 W W )  = 
td 

s i n  0.10w + 
2 W 

!& (1 - cos  0 . 0 5 ~ )  
W 3 

where the  s u b s t i t u t i o n  of s e l e c t e d  values  o f  frequency 

w i l l  a f fo rd  the r e a l  and imaginary c o e f f i c i e n t s  of the 

Four ie r  transform a t  each frequency chosen. 

The time response of p i t ch ing  v e l o c i t y ,  shown i n  

Figure 5, was div ided  i n t o  d i s c r e t e  i n t e r v a l s  and the 

c o e f f i c i e n t s  of the  cubic  equat ion 

De(t) = a t 3  + b t 2  f c t  f d 

were found a s  f o l l o w s :  
< <  

For  the t i m e  i n t e r v a l  0 = t = 0110, i n spec t ion  of  

the  c u r v e  i n d i c a t e s  t h a t  i t  may b e  c l o s e l y  approximated b y  

a cubic  without lower-order terms s o  t h a t  b = c = d = 0 

and, a t  t = 0.10 second, the r e l a t i o n s h i p  i s  w r i t t e n  

4.9 = a 
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The equat ion for t h i s  t i m e  interval becomes 

Ds0ft) = 4.7t 3 

e 
For  the time i n t e r v a l  0,lO = t 5 0.30, a quadrat ic  

r ep resen ta t  ion, since t h e  t r a n s i e n t  i n  t h i s  interval does 

not i n d i c a t e  t h e  need o f  a cubic r ep resen ta t ion ,  w i l l  be 

assumed where the c o e f f i c i e n t s  a r e  found by the s o l u t i o n  

of t h e  following equat ions:  

2 0.0049 = (0,lO) b + (0,lO)c + d De(t = 0.10) 

D e ( %  = O e 2 O )  0,0489 = (0,20)2b + ( 0 , 2 0 ) c  + d 

D0(t = O e 3 0 )  0.0733 = (0,30)2b -e ( 0 , g O ) c  + d 

The s o l u t i o n  by "successive sub t r ac t ion"  i s  i l l u s t r a t e d  here  

s ince  equal time i n t e r v a l s  were used. 

0,0049 -0.0489 = (0.01 -O.O4)b + (0.10 - 0 , 2 O ) c  + (- 
0 

0,0489 -0 ,0733  = (0.04 - O . O 9 ) b  + (0 ,20 - 0 . 5 0 ) ~  + 
0 

0.0244 = 0.05b + 0 . 1 0 ~  



0,0196 = -Oe02b 

-0.98 = b 

0,734 = c 

-0.0587 = d 

The equation for t h i s  t i m e  i n t e r v a l  becomes 

D e , ( t )  = -Oe38t2 e 0.734t - 0.0587 

C 
For  t h e  time i n t e r v a l  0.30 5 t = 0.80, t h e  s lope of 

the t r a n s i e n t  is z e r o  a t  a time of  0.55 second. Use of 

this c o n d i t i o n  i s  desirable I n  eva lua t ing  the cons tan ts  

o v e r  t h i s  i n t e r v a l ;  therefore  

and t h e  equat ion f o r  t h i s  time i n t e r v a l  becomes 
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For the  t i m e  i n t e r v a l  0.80 = t = 1.40, the s o l u t i o n  

of 

D e ( t  = 0 , 8 0 )  0.0793 = ( 0 . 8 0 ) 3 ,  + (0,80)2b + ( 0 . 8 0 ) ~  + d 

D e ( t  = 1.00) 0.0723 =  LOO)^^ + (l.00)2b + (1.00)~ + d 

D e f t  = 1.20) 0.0665 = ( l . ~ ! O ) ~ a  + (1*20)2b + (1,20)c + d 

gives an equat ion f o r  t h i s  time i n t e r v a l  of 

D e 3 ( t )  = o.oyj4tf’ - 0.09125t2 + 0.0425t + 0,08565 

< For t he  time i n t e r v a l  1,bO 5 t = ~ t )  the  equa t ion  f o r  

a cons tan t  value from s teady  s t a t e  t o  i n f i n i t y  becomes 

Therefore,  

D e 4 ( t )  = 0.0636 

The Four ie r  transform o f  the response 9 s  now evalu- 

ated b y  us ing  the foregoing analytical expressions b y  

smmfng the  following I n t e g r a l s :  



The i n t e g r a t i o n  of these terms (g iven  i n  t e x t  a f t e r  eq.  ( 6 ) )  
leads t o  the following relations: 
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APPENDIX C 

APPLICATION OF THE LAPLACE TRANSFORM TO 

A RESPONSE EQUATION 

The response equat ion  f o r  the normal acce le ra t ion ,  

a s  used i n  t he  Prong method described by Greenberg, 33 i s  

where nsS i s  the normal' acce le ra t ion  a t  steady s t a t e ,  The 

equet ion for a s t e p  control input of ma&;nitude 

follows: 

6, is as 

The Ltiplace transform, ind ica ted  by  the  ope ra to r  p 

when appl ied  to equat ion (Cl), gives 

and squat  ion  ( C 2  ) becomes 

BtP) = p 

Greenberg, l oc .  c i t ,  33 - -  

100 



By d e f i n l t i o n ,  the  t r a n s f e r  func t ion  fs t h e  r a t i o  of the 

Laplace t ransform o f  t h e  output  t o  t h e  Laplace transform of 

the input  ( i n i t i a l  cond i t ions  zero) 

where the  s u b s t i t u t i o n  of b = -2a and k = a2 + u2 has 

been made. The equat ion may be rearranged t o  agree w i t h  

the form of equat ions  ( 1 7 )  so that 

r 
I 

bn,, f J1w - J2a kn,, + -  
60 

+ B  
2 %s 4. J2 

80 
P 

1 6 (PI = 
p2 + bp + k 

where the s u b s t i t u t i o n  of' j w  f o r  the opera tor  p will pro- 

duce the  frequency-response r e l a t i o n s h i p s  * 



APPENDIX D 

AN IMTEGRATING MATRM 

The Donegan-Pearson methodj4 of  a n a l y s i s  of  t r a n s i e n t  

responses s u g p s t s  a matrix s o l u t i o n  which, i f  followed, 

r e q u i r e s  some knowledge of i n t e g r a t i n g  matr ices .  An i n t e -  

g r a t i n g  mat r ix  be l ieved  t o  be somewhat e a s i e r  t o  use than 

the one suggested by Donegan and P e a r ~ o n ~ ~  i s  presented here  

toge ther  with i t s  d e r i v a t i o n .  

If an a r b i t r a r y  time-curve is  chosen and divided i n t o  

equal i n t e r v a l s  of time, then by Simpson's ru le  a papabola 

may be descr ibed through t h r e e  ad jo in ing  po in t s  

34 Donegan and Pearson, loc. c i t .  - -  



By the use  of' equation ( A & )  given in t h e  report by  

Dfederfch, 36 

Solution of equat ion (Dl) f o r  values  of the integers n = 0 ,  

1, 2, 3, 4, . m gives  

J t n  y dt = 0 
tn-1 

( n  = 0 )  

( n  = 1) 

( n  = 2) 

36 Diedesich,  - -  loc, cit. 
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